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Introduction

Modern machine learning and statistics deal with the problem
of learning from data:

given a training dataset (yi , xi ) i ∈ I where

xi ∈ Rd is the input
yi ∈ R is the output,

one seeks a function f : Rd 7→ R from a certain function
class F that has good prediction performance on test
data (yt , xt)), t ∈ T , i.e. which has small testing error∑

t∈T
`(yt , f (xt)) (1)
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This problem is of fundamental significance and finds
applications in numerous scenarios.

For instance, in image recognition,

the input x corresponds to the raw image
the output y is the image category

and the goal is to find a mapping f that can classify new
images with acceptable accuracy.

Decades of research efforts in statistical machine learning have
been devoted to developing methods to find f efficiently with
provable guarantees.
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- Prominent examples include

- linear classifiers (e.g., linear / logistic regression, linear
discriminant analysis),

- kernel methods (e.g., support vector machines),
- tree-based methods (e.g., decision trees, random forests),
- nonparametric regression (e.g., nearest neighbors, local

kernel smoothing), etc.

- Roughly speaking, each aforementioned method corresponds
to a different function class F from which the final classifier f
is chosen.
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- Deep learning, in its simplest form, consists in looking for
functions of the form

F =

{
f (x , θ) = WL(σL(WL−1(σL−1(· · ·σ2(W1(x)))))

}
.

where σl is a non-linear function which applies componentwise
and Wl is an affine operator, l = 1, . . . , L.
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- Evolution of the performances over the last 7 years . . .
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- It is widely acknowledged that two indispensable factors
contribute to the success of deep learning, namely

- huge datasets that often contain millions of samples and

- immense computing power resulting from clusters of
graphics processing units (GPUs).

- Admittedly, these resources are only recently available.
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- However, these two alone are not sufficient to explain the
mystery of deep learning:

- over-parametrization: the number of parameters in
state-of-the-art models is very often much larger than the
sample size,

← which might make them prone to overfitting,



Introduction Recent trends Interpolation New analysis via Neuberger’s theorem

and

- nonconvexity does not seem to be a problem: even with
the help of GPUs, training deep learning models is still
NP-hard in the worst case due to the highly nonconvex
loss function to minimize.

Nevertheless, standard incremental algorithms
(Stochastic Gradient Descent, etc) often reach good
minimisers of the Empirical Risk

- A lot remains to be understood ! ...
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- Deep learning is able to approximate complicated nonlinear
maps through composing many simple nonlinear functions.

- The motivation for the multilayer architecture is that there are
different levels of features and the layers might be able to
properly account for these different levels independently.

- Here, we sample and visualize weights from a pre-trained
AlexNet model.
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This can be used to generate new images using for instance,
Generative Adversarial Networks



Introduction Recent trends Interpolation New analysis via Neuberger’s theorem

Why overparametrise ?

- It is often observed that depth helps efficiently extract
features from the dataset, whereas

- (recent studies found that increasing both depth and width in
a shallow model leads to very nice continuous limits, where
PDE tools can be put to work...)
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What consequences does overparametrisation have on learning ?

- In deep neural networks, over-parametrization usually entails
existence of many local minimisers with potentially different
statistical performance.

- Common practice advises to runs stochastic gradient descent
with random initialization and converges to parameters with
very good practical prediction accuracy.

Why is this simple approach actually often working ?

The goal of current research is to resolve these paradoxes !
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We will now survey some of the recent results from the literature
and the most intriguing mysteries of deep learning

- expressivity

- generalisation bounds (PAC + compression)

- optimisation algorithms

- interpolation
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Expressivity
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- Recent works have been devoted to the approximation
accuracy of deep neural networks for various measures of the
error (expressivity)

- Some notable works include

* the approximation results of Yarotsky
* the nonlinear approximation analysis of RELU networks

by Daubechies, Devore Foucart, Hanin and Petrova
* the approximation of analytic maps by Weinan E and

Wang.
* approximation of functions in Sobolev spaces by Guhring,

Kutyniok and Petersen
* the definition of new approximation spaces (Barron

spaces) by Weinan E. et al. (which play the same role as
Besov spaces for nonlinear approximation with wavelet
bases)

* etc
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We will use the following theorem from Guhring, Kutyniok and
Petersen.

Theorem

Let k ∈ N≥2, 1 ≤ p ≤ ∞,B > 0, and 0 ≤ s ≤ 1. Then, there exists
a constant c = c(d , p, k ,B, s) > 0 with the following properties:
for any ε ∈ (0, 1/2), for any f : (0, 1)d 7→ R in the ball of radius B
in W k,p, there exists a vector of weights W and an associated
neural network fW such that

‖fW − f ‖W s,p((0,1)d ) ≤ ε
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Theorem

and

(i) the number L of layers is bounded by

L ≤ c log2

(
ε−k/(k−s)

)
(ii) the number d +

∑L
l=1Nl of neurons is bounded by

d +
L∑

l=1

Nl ≤ c ε−d/(k−s) · log2

(
ε−k/(k−s)

)
.
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Generalisation and compression
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Really interesting work by Bartlett, Barron and others ...
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New trends involve compression showing that intrinsic
dimension of the deep networks is not as large as we think !
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even the theory of coresets was used in order to compress !
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One of the main issues using the traditional approaches was
to obtain bounds which do not blow up as the number of
layers increases

⇒ this would go against empirical findings

Noah Golowich, Alexander Rakhlin, Ohad Shamir recently
solved the problem using Rademacher complexity in a careful
way

Figure: Caption
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Interesting non-parametric statistical oriented results for
composition functions using sparsity are given in

Figure: Caption
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Where do gradient methods end up landing in this wild lanscape ?
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Stochastic Gradient Langevin Dynamics (SGLD) avoids
spurious local minimisers !
Proved in the work of Charikar et al. for the Langevin
approximation
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Width helps simplify the analysis !
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But recent work of Chizat, Oyallon and Bach showed that
deep neural networks then reach in a tangent kernel regime . . .
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The importance of being flat !

Figure: Caption
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Figure: Flat minimisers are easier to reach and have better generalisation
properties (empirical)
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Yet another fascinating direction . . .

Recent work of Lavaei and co-authors shows that incremental
methods can avoid spurious minimisers

Figure: Caption
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Interactions between optimisation and regularisation

- Implicit regularisation of stochastic gradient (based on older
seminal ideas of Rosasco and others)
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Interactions between optimisation and regularisation

- Implicit bias of stochastic gradient
- for linearly separable data, training a linear classifier with

gradient descent on the logistic loss, or any loss with an
exponential tail, implicitly leads to a max-margin linear
classifier for the `2-norm
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Interactions between optimisation and regularisation
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Interactions between optimisation and regularisation

Implicit bias of stochastic gradient for two layer networks
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Interpolation
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- Overparametrisation works despite contradicting the intuition
that ”overfitting makes no sense”

This topic is called ”interpolation”
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- Belkin et al. introduced the ”double descent curve”
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Montanari et al. resolved this paradox ... for the linear model !
(Uses a lot of random matrix theory in the asymptotic regime)
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Other models in non-parametric regression have been
addressed by Belkin, Rakhlin and Tsybakov
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Figure: Singular Kernel estimators that interpolate !
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A simple analysis of interpolation
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Mathematical Model

Let Zi = (Xi ,Yi ) in Rd+1 × R, i = 1, . . . , n be observations drawn
from the following model

Yi = f ∗(Xi ) + εi (2)

i = 1, . . . , n, where we assume that

the vectors Xi are random and i.i.d., taking values in Rd

and the noise vector ε = [ε1, . . . , εn]t is sub-Gaussian, with
sub-Gaussian constant denoted by Kε.

The goal is to estimate f ∗ based on the observation Z1, . . . ,Zn.

The estimation of f ∗ will be based on restricting the search to a
subset F of functions of a Banach space B.
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In order to generalise, the estimator should be chosen in the set of
stationary points of the empirical version of the risk R : F → R
defined by

R(f ) = E [`(Y , f (X ))],

where ` : R× R→ R satisfies

`(y , y) = 0 for all y ∈ R and

`(y , ·): R 7→ R is a strictly convex twice continuously
differentiable nonnegative function.
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Let R̂n(f ) denote the empirical risk defined by

R̂n(f ) =
1

n

n∑
i=1

`(Yi , f (Xi )). (3)

Then, the Empirical Risk Minimizer f̂ ERM will be a solution to

f̂ ERM ∈ argminf ∈F R̂n(f ). (4)
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Assumption

The sample satisfies the following separation

n
min
i ,i ′=1

‖Xi − Xi ′‖2 ≥ cn−1/ν (5)

with probability larger than or equal to 1− δ, for some positive
constants c, ν and for δ ∈ (0, 1).

The Holder exponent ν is usually interpreted as a surrogate for the
intrinsic dimension of the data manifold. E.g., this intrinsic
dimension was estimated to be less than 20 for the MNIST dataset
.

Figure: Caption
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An handy result from Neuberger about the distance of the solution
of a zero finding problem, i.e. consisting in solving

F (f̂ ) = 0

to a given initial guess f ∗
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An handy result from Neuberger about the distance of the solution
of a zero finding problem, i.e. consisting in solving

F (f̂ ) = 0 (corresponding to first order

optimality condition

for the ERM !)

to a given initial guess f ∗
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Theorem (Neuberger’s theorem)

Suppose that B, J , and K are three Banach spaces and that B is
compactly embedded in J .
Suppose that F : B → K is continuous with respect to the
topologies of J and K.
Suppose that f ∈ B, that r > 0, and that for each g in Br (f ),
there is an h in B̄r (0) such that

lim
t→0+

1

t
(F (g + th)− F (g)) = −F (f ).

Then there is f̂ in B̄r (f ) such that F (f̂ ) = 0.

For r > 0 and u in B, Br (u) and B̄r (u) will denote the open and
closed balls in B, respectively, with center u and radius r .
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We recall that f ∈ F , and d ′ ∈ B such that F ⊂ B. Let us
compute the directional derivative of R̂n

DR̂n(f ) · h′ = lim
t→0

R̂n(f + th′)− R̂n(f )

t

= lim
t→0

1
n

∑n
i=1 `(Yi , f (Xi ) + th′(Xi ))− `(Yi , f (Xi ))

t

= lim
t→0

1
n

∑n
i=1 ∂2 `(Yi , f (Xi )) th′(Xi ) + c ∂22 `(Yi , f (Xi ) t2h′

2
(Xi )

t

with c ∈ [0, 1], and thus

DR̂n(f ) · h′ =
1

n

n∑
i=1

∂2`(Yi , f (Xi ))h′(Xi ).



Introduction Recent trends Interpolation New analysis via Neuberger’s theorem

In the same spirit, we get

D2R̂n(f ) · (h′, h) =
1

n

n∑
i=1

∂22 `(Yi , f (Xi )) h′(Xi )h(Xi ).
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Based on these computations, Neuberger’s theorem resorts to
obtaining a bound on the norm of an appropriate solution d ′ to the
following linear system

1

n

n∑
i=1

∂22 `(Yi , f (Xi )) h′(Xi )h(Xi ) = −1

n

n∑
i=1

∂2`(Yi , f
∗(Xi ))h′(Xi )

for all f ∈ Br (f ∗) and for all h′ ∈ B.
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Let ψ denote the bump function

ψ(x) =


exp

(
1− 1

1−‖x‖22

)
if ‖x‖22 ≤ 1,

0 otherwise

(6)

and let ψσ = ψ(·/σ).
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We will decouple the problem and first solve it in a Sobolev space,
and then approximate the solution by a deep neural network using
the Guhring, Kutyniok and Petersen theorem . . .
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Theorem

Set ` to be the `22 loss, i.e. `(y , z) = 1
2(y − z)2 for all y , z in R.

Let Assumption 1 hold. Take any σ ≤ cn−1/ν such that the ball in
B centered at f ∗ with radius 6Kε n‖ψσ‖B ⊂ F .

Then, with high probability, there exists a mapping f̂ ERM : Rd 7→ R
which is a stationary point of the empirical risk minimisation
problem and which lies at a distance at most

6Kε n‖ψσ‖B

from f ∗.
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Our main result is the following

Theorem

Set ` to be the `22 loss, i.e. `(y , z) = 1
2(y − z)2 for all y , z in R.

Let Assumption 1 hold. Assume that ‖f ∗‖Wk,p ≤ B for some
k ∈ N and p ∈ [1,+∞]. Assume that d, p, ν and n are such that
6Kεn

1/2−d/(νp)‖ψ‖Wk,p ≤ B.

Then, for any s ∈ [0, 1], with high probability, there exists a deep
neural network fŴ : Rd 7→ R with∥∥fŴ − f ∗

∥∥
Lp(D) ≤ CKεn

1−d/(νp)‖ψ‖Wk,p(D)

for some positive constant C = C (d , p, k,B, s)
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Theorem

and with

(i) a number L of layers upper bounded by

L ≤ c log2

((
CKεn

1−d/(νp)‖ψ‖Wk,p(D)

)−k/(k−s))
(ii) a number d +

∑L
l=1Nl of neurons upper bounded by

d +
L∑

l=1

Nl ≤ c
(
CKεn

1−d/(νp)‖ψ‖Wk,p(D)

)−d/(k−s)
· log2

((
CKεn

1−d/(νp)‖ψ‖Wk,p(D)

)−k/(k−s))
which approximately solves the empirical risk minimisation
problem’s first order optimality conditions over the Sobolev class
Wk,p(D) with Ws,p(D)-distance at most Kεn

1−d(νp)‖ψ‖Wk,p(D) to
its solution set.
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Sketch of the proof
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Notice that for all f ∈ Bs(fW ∗), we have

1

n

n∑
i=1

∂`

∂2
(Yi , f (Xi )) h′(Xi ) = −1

n

n∑
i=1

(Yi − f (Xi )) h′(Xi ),

and that

1

n

n∑
i=1

∂2`

∂22
(Yi , f (Xi )) h′(Xi )h(Xi ) =

1

n

n∑
i=1

h′(Xi )h(Xi ).

Then, using the fact that ` is the `22 loss, Neuberger’s condition
reads

1

n

n∑
i=1

h′(Xi )h(Xi ) =
1

n

n∑
i=1

h′(Xi ) (Yi − fW ∗(Xi )) .
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One possible solution can be obtained by setting

h(Xi ) = Yi − fW ∗(Xi ) = εi

i = 1, . . . , n, i.e. using a noise interpolating solution (reminiscent
of the work by Belkin, Rakhlin and Tsybakov on singular kernels
previously mentioned).

One simple option is to take

h(x) =
n∑

i=1

εi ψ

(
x − Xi

σ

)
where ψ : Rp → R is a kernel function and σ > 0 is a bandwidth.
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Let

ψσ = ψ (·/σ) .

Now, observe that, based on Assumption 1, the functions
ψ((x − Xi )/σ), and their successive derivatives up to k ,
i = 1, . . . , n, have disjoint supports for with probability larger than
or equal to 1− δ as long as σ ≤ cn−1/ν .
We thus obtain that

‖h‖B = ‖ε‖1 ‖ψσ‖B

Moreover, as is well known for subGaussian vectors, the norm is
controlled by

‖ε‖2 ≤ 6Kεn.

with probability at least 1− exp(−n), combining the conclusion of
Theorem 4 follows from Neuberger’s Theorem 3.
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The proof for the deep neural network case is completed by using
the approximation result of Guhring, Kutyniok and Petersen.
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The number of layers may have to increase logarithmically
with the number of samples

The total number of parameters blows up polynomially in the
number of samples and exponentially in the dimension of the
problem
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Conclusion and perspectives
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- This simple exercice in using quantitative zero finding
theorems such as Neubergers shows that we can easily prove
results that do not blow up with the number of layers with
interpolating networks

- We can easily study local minimisers as well using the same
technique

We would need to explore approximation theory in
unusual/non standard directions:

- improve the Guhring, Kutyniok and Petersen theorem by
introducing the constraint that the network be a flat
minimiser

- This would explain that Stochastic Gradient
methods can find the correct approximation with
large probability (?)
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Some papers:

A finite sample analysis of the double descent phenomenon for
ridge function estimation, Emmanuel Caron and Stephane
Chretien: arXiv preprint arXiv:2007.12882

The double descent phenomenon for Deep Nets, Emmanuel
Caron and Stephane Chretien (soon on Arxiv)

arXiv preprint arXiv:2007.12882
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