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Introduction

Introduction

Modern machine learning and statistics deal with the problem
of learning from data:

given a training dataset (y;, x;) i € | where

xi € R? is the input
yi € Ris the ,

one seeks a function f : RY — R from a certain function
class F that has good prediction performance on test
data (yt, xt)), t € T, i.e. which has small testing error

S Uye, F(xe)) (1)

teT
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This problem is of fundamental significance and finds
applications in numerous scenarios.

For instance, in image recognition,

the input x corresponds to the raw image
the output y is the image category

and the goal is to find a mapping f that can classify new
images with acceptable accuracy.

Decades of research efforts in statistical machine learning have
been devoted to developing methods to find f efficiently with
provable guarantees.
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- Prominent examples include

- linear classifiers (e.g., linear / logistic regression, linear
discriminant analysis),

- kernel methods (e.g., support vector machines),

- tree-based methods (e.g., decision trees, random forests),

- nonparametric regression (e.g., nearest neighbors, local
kernel smoothing), etc.

- Roughly speaking, each aforementioned method corresponds
to a different function class F from which the final classifier
is chosen.
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- Deep learning, in its simplest form, consists in looking for
functions of the form

F= {f(x,m Wi (Wi (ora "Uz(Wl(X)))))}-

where o, is a non-linear function which applies componentwise
and W, is an affine operator, I =1,..., L.



Introduction

- Evolution of the performances over the last 7 years ...

Model Year # Layers | # Params | Top-5 error
Shallow = 012 - T
AlexMNet 2012 H A1 (L
VGG 2014 19 1440 T.3%

GoogleMet 2014 22 ™ 6.7
ResNet-152 2015 152 G0N 3659
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- It is widely acknowledged that two indispensable factors
contribute to the success of deep learning, namely

- huge datasets that often contain millions of samples and

- immense computing power resulting from clusters of
graphics processing units (GPUs).

- Admittedly, these resources are only recently available.
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- However, these two alone are not sufficient to explain the
mystery of deep learning:

- over-parametrization: the number of parameters in
state-of-the-art models is very often much larger than the
sample size,

< which might make them prone to overfitting,

’\\M/v

Overfitting
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and

- nonconvexity does not seem to be a problem: even with
the help of GPUs, training deep learning models is still
NP-hard in the worst case due to the highly nonconvex
loss function to minimize.

Nevertheless, standard incremental algorithms

(Stochastic Gradient Descent, etc) often reach good
minimisers of the Empirical Risk

- A lot remains to be understood ! ...
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- Deep learning is able to approximate complicated nonlinear
maps through composing many simple nonlinear functions.

- The motivation for the multilayer architecture is that there are
different levels of features and the layers might be able to
properly account for these different levels independently.

- Here, we sample and visualize weights from a pre-trained

AlexNet model.
BAEVRE
= =
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This can be used to generate new images using for instance,
Generative Adversarial Networks




Introduction

Why overparametrise ?

- It is often observed that depth helps efficiently extract
features from the dataset, whereas

- (recent studies found that increasing both depth and width in
a shallow model leads to very nice continuous limits, where
PDE tools can be put to work...)
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What consequences does overparametrisation have on learning 7

- In deep neural networks, over-parametrization usually entails
existence of many local minimisers with potentially different
statistical performance.

- Common practice advises to runs stochastic gradient descent
with random initialization and converges to parameters with
very good practical prediction accuracy.

Why is this simple approach actually often working 7

The goal of current research is to resolve these paradoxes !
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We will now survey some of the recent results from the literature
and the most intriguing mysteries of deep learning

- expressivity
- generalisation bounds (PAC + compression)
- optimisation algorithms

- interpolation
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Expressivity
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- Recent works have been devoted to the approximation
accuracy of deep neural networks for various measures of the
error (expressivity)

- Some notable works include

*
*

the approximation results of Yarotsky

the nonlinear approximation analysis of RELU networks
by Daubechies, Devore Foucart, Hanin and Petrova

the approximation of analytic maps by Weinan E and
Wang.

approximation of functions in Sobolev spaces by Guhring,
Kutyniok and Petersen

the definition of new approximation spaces (Barron
spaces) by Weinan E. et al. (which play the same role as
Besov spaces for nonlinear approximation with wavelet
bases)

etc
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We will use the following theorem from Guhring, Kutyniok and
Petersen.

Theorem

Let k € N>3,1 < p<o00,B>0,and0 <s <1. Then, there exists
a constant ¢ = c(d, p, k, B,s) > 0 with the following properties:
for any e € (0,1/2), for any f: (0,1)9 — R in the ball of radius B
in WK there exists a vector of weights W and an associated
neural network fy, such that

1w = fllwsr(o,1)9) < €
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and

(i) the number L of layers is bounded by
L < c log, (54‘/("*5))

(ii) the number d + Z,L:1 N of neurons is bounded by

L
d+ 3 N < c et jog, (Efk/(kfs)> .
I=1
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Generalisation and compression
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Really interesting work by Bartlett, Barron and others ...

Theorem (B., Foster, Telgarsky, 2017)

With high probability over n training examples
(X1, Y1)..... (Xn. ¥a) € X x {£1}, every fi, with Ry, < r has
1 . o=
Pr(sign(f(X)) # Y) < = > _1[vif(X + o{ — ).

Ty n )

Here, fi4 is computed in a network with L layers and parameters

fin(x) 1= o (Wiop_1 (W1 ---en(Wax) - ).

where the o; are 1-Lipschitz, and we measure the scale of fiy using a
product of norms of the matrices W,

yra % 372

for example, r .-—]_[f.'=1 | Wil [E.‘, s "
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New trends involve compression showing that intrinsic
dimension of the deep networks is not as large as we think !

Stronger generalization bounds for deep nets via a compression

approach
Sanjeev Arora” Rong Ge' Behnam Neyshabur? Yi Zhang!
Abstract

Deep nets generalize well despite having more parameters than the number of training sam-
ples. Recent works try to give an explanation using PAC-Bayes and Margin-based analyses, but
do not as yet result in sample complexity hounds better than naive parameter counting. The
current paper shows generalization bounds that're orders of magnitude better in practice. These
rely upon new succinct reparametrizations of the trained net a compression that is explicit
and efficient. These yield generalization bounds via a simple compression-based framework in-
troduced here. Our results also provide some theoretical justification for widespread empirical
success in compressing deep nets.

Analysis of correctness of our compression relies upon some newly identified “noise stabil-
ity” properties of trained deep nets, which are also experimentally verified. The study of these
properties and resulting generalization bounds are also extended to convolutional nets, which
had eluded earlier attempts on proving generalization.
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even the theory of coresets was used in order to compress !

Published as a conference paper at ICLR 2019

DATA-DEPENDENT CORESETS FOR COMPRESSING
NEURAL NETWORKS WITH APPLICATIONS TO GENER-
ALIZATION BOUNDS

Cenk Baykal™, Lucas Liebenwein'*, Igor Gilitschenski!, Dan Feldman', Daniela Rus'

ABSTRACT

We present an efficient coresets-based neural network compression algorithm that
sparsifies the parameters of a trained fully-connected neural network in a manner
that provably approximates the network’s output. Our approach is based on an im-
portance sampling scheme that judiciously defines a sampling distribution over the
neural network parameters, and as a result, retains parameters of high JI'l'IpOI'l:ll‘ILE
w lule dmardme redund.ml ones. Vve ]e\-emoe a novel, empmcu] notion of \en\l

parameters. Our Lheoreuu] dna]
racy of the resulting compressed network an s rise to generalization bounds
that may provide new hts into the generalization properties of neural networks.
‘We demonstrate the practical effectiveness of our algorithm on a variety of neural
network configurations and real-world data sets.

1 INTRODUCTION

Within the mast decade lareececale netiral networks have demanstrated nnnrecedented emmireal cnee
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One of the main issues using the traditional approaches was
to obtain bounds which do not blow up as the number of
layers increases

= this would go against empirical findings

Noah Golowich, Alexander Rakhlin, Ohad Shamir recently
solved the problem using Rademacher complexity in a careful

way
Size-Independent Sample Complexity of Neural Networks
Noah Golowich Alexander Rakhlin Ohad Shamir
Harvard University MIT Weizmann Institute of Science
and Microsoft Research
(=)
':'] Abstract
We study the sample complexity of learning neural networks, by providing new bounds on their
= Rademacher complexity assuming norm constraints on the parameter matrix of each layer. Compared
; to previous work, these complexity bounds have improved dependence on the network depth, and under
o some additional assumptions, are fully independent of the network size (both depth and width). These
e~ results are derived using some novel techniques, which may be of independent interest.
&) 1 Introduction
S
L One of the major challenges involving neural networks is explaining their ability to generalize well, even if
) thev are very laree and have the potential to overfit the trainine data [Nevshabur et al.. 2014. Zhane et al..
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Interesting non-parametric statistical oriented results for
composition functions using sparsity are given in

NONPARAMETRIC REGRESSION USING DEEP NEURAL
NETWORKS WITH RELU ACTIVATION FUNCTION

BY JOHANNES SCHMID'

University of Twente

N

e, Consider the multivariate nonparametric regression model. It is

b shown that estimators based on sparsely connected deep neural ne

= works with ReLU activation function and properly chosen network

= architecture achieve the minimax rates of convergence (up to log n-

-— factors) under a general composition assumption on the regression

- function. The includes many well-studied structural con-

~ straints such as (generalized) additive models. While there is a lot

= of flexibility in the network architecture, the tuni i
the sparsity of the network. Specifically, we consider

— with mumber of potential network parameters exceeding the sample

= size. The analysis gives some insights into why multilayer feedforward

2] neural networks perform well in practice. Interestingly, for ReL!

= tivation function the depth (number of layers) of the neural network

= architectures plays an important role and our theory su s that for

o nonparametric regression, scaling the network depth with the sample

= natural. It s also shown that under the compasition assump-

— tion wavelet estimatars can only achieve suboptimal rates

>

on 1. Introduction. In the nonparametrie regression model with random

on covariates in the unit hypercube, we observe n i.i.d. vectors X; € [0,1]? and

v n responses ¥; € R from the model

o0 (1) = foX;)+5, i=1,...,n

The noise vari;
dent of (X;);. The statistical problem is to recover the unknown function

fo : [0,1]% — R from the sample (X;,Y;);. Various methods exist that al-
= S B Semv LR 2oy Ax S

are assumed to be i.i.d. standard normal and indepen-
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Where do gradient methods end up landing in this wild lanscape 7
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Overparameterized Nonlinear Learning:
Gradient Descent Takes the Shortest Path?

amet Oymak® and Mahdi Soltanolkotabif

Decembe

Abstract

Many modern learning tasks involve fitting nonlinear models to data which are trained in an overpa-
dataset. Due to
al to

rameterized regime where the parameters of the model exceed the size of the traini
ation, the training loss may have infinitely many global minima and it is eritics
understand the properties of the solutions found by first-order optimization scheme:
gradient descent starting from different initializations. In this paper we demonstrate that when the loss

this overparameter

ich as (stochastic)

has certain properties over a minimally small neighborhood of the initial point, first order methods such
stochastic) gradient descent have a few intriguing properties: (1) the iterates converge at a geometric
lobal optima of the loss the

a even when the loss is nonconvex, (2) among all

rate to a global optix
iterates converge to one with a near minimal distance to the initial point,
direct route from the initial point to this global optima. As part of our proof technique, we introduce a

) the iterates take a ne

new potential function which captures the precise tradeoff between the loss funetion and the distance to
the initial point as the iterations progress. For Stochastic Gradient Descent (SC
martingale techniques that guarantee SGD never leaves a small neighborhood of the initialization, even
rate the utility of our general theory for a variety of problem

we develop novel

with rather large learning rates. We demo
domains spanning low-rank matrix recovery to neural network training,
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Stochastic Gradient Langevin Dynamics (SGLD) avoids
spurious local minimisers !

Proved in the work of Charikar et al. for the Langevin
approximation

A Hitting Time Analysis of Stochastic Gradient
Langevin Dynamics

Yuchen Zhang* Percy Liang! Moses Charikar®

April 10, 2018

Abstract

We study the Stochastic Gradient Langevin Dynamics (SGLD) algorithm for non-convex optimization.
The algorithm performs stochastic gradient descent, where in each step it injects appropriately scaled
Gaussian noise to the update. We analyze the algorithm’s hitting time to an arbitrary subset of the
parameter space. Two results follow from our general theory: First, we prove that for empirical risk
minimization, if the empirical risk is pointwise close to the (smooth) population risk, then the algorithm
finds an approximate local minimum of the population risk in polynomial time. escaping suboptimal
local minima that only exist in the empirical risk. Second, we show that SGLD improves on one of the
best known learnability results for learning linear classifiers under the zero-one loss.

1 Introduction

A central challenge of non-convex optimization is avoiding sub-optimal local minima. Although escaping
all local minima is NP-hard in general [e.g. 7]. one might expect that it should be possible to escape “ap-
propriately shallow™ local minima, whose basins of attraction have relatively low barriers. As an illustrative
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Width helps simplify the analysis !

Wide Neural Networks of Any Depth
Evolve as Linear Models Under Gradient Descent

Lechao Xiao“!2 Samuel S. Schoenholz! Yasaman Bahri'
Jascha Sohl-Dickstein' Jeffrey Pennington '

Jaehoon Lee

o) Abstract systems can often shed light on these hard problems. For
Ly A longstanding soal in deep learning research neural networks, one such limit is that of infinite width,
= s Do o Doty ehaaerioe troinine and which refers either to the number of hidden units in a fully
2 cisely 2 a .
™ gcncnlimlimp] HBWgVCI' the often complc; loss connected layer or to the number of channels in a convo-
> I'\ndsmpés of n‘cuml nclw‘orks have made al‘hcoi‘\' lutional layer. Under this limit, the output of the network
-— of learning dynamics elusive. In this work v\‘c at initialization is a draw from a Gaussian process (GP):
2 chow that for wide neural networks the learning moreover, the network output remains governed by a GP
—_ dynamics simplify considerably and that, in lhg after exact Bayesian training using squared loss (Neal, 1994;
infinite width limit. they are governed by a linear Lee et al., 2018; Matthews et al., 2018; Novak et al., 2019;
N model obtained fx’o}n xh" ﬁ]’slturd Twl‘or expan. Garriga-Alonso et al., 2018). Aside from its theoretical
2 nodel obtained from the first-order Taylor expan-

simplicitv. the infinite-width limit is also of practical inter-
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But recent work of Chizat, Oyallon and Bach showed that
deep neural networks then reach in a tangent kernel regime . ..

On Lazy Training in Differentiable Programming

Lénaic Chizat Edouard Oyallon
CNRS. Université Paris-Sud CentraleSupelec, INRIA
Orsay, France Gif-sur-Yvette. France
lenaic.chizat@u-psud.fr edouard.oyallon@centralesupelec.fr

Francis Bach
INRIA, ENS, PSL Research University
Paris, France
francis.bach@inria.fr

Abstract

In a series of recent theoretical works, it was shown that strongly over-
parameterized neural networks trained with gradient-based methods could converge
exponentially fast to zero training loss, with their parameters hardly varying. In
this work, we show that this “lazy training” phenomenon is not specific to over-
parameterized neural networks, and is due to a choice of scali mplicit,
that makes the model behave as its linearization around th
yieldi madel equivalent to learning with positive-defin: E:

analysis, we exhibit various situations where this phenomenon arises
in non-convex optimization and we provide bounds on the distance between the
lazy and linearized optimization paths. Our numerical experiments bring a critical
note, as we observe that the performance of commonly used non-linear deep con-
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The importance of being flat !

Understanding Generalization through Visualizations

W. Ronny Huang Zeyad Emam
University of Maryland University of Maryland
wrhuang@umd. edu zeyad@math.umd.edu
Micah Goldblum Liam Fowl Justin K. Terry
University of Maryland University of Maryland University of Maryland

goldblum@math . umd . edu 1fowl@math.umd.edu justinkterry@gmail . com

Furong Huang Tom Goldstein
University of Maryland University of Maryland
furongh®@cs . umd. edu tomg@cs . umd. edu

Abstract

The power of neural networks lies in their ability to generalize to unseen data, yet
the underlying reasons for this phenomenon remain elusive. Numerous rigorous
attempts have been made to explain generalization, but available bounds are still

guite loose, and anal does not alwavs lead to true understanding. The goal of
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(a) 100% train, 100% test (b) 100% train, 7% test

"-

(¢) Minimizer of network in (a) above (d) Minimizer of network in (b) above

Figure: Flat minimisers are easier to reach and have better generalisation
properties (empirical)
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Recent work of Lavaei and co-authors shows that incremental

Yet another fascinating direction . ..

methods can avoid spurious minimisers

Absence of Spurious Local Trajectories in
Time-Varying Optimization: A Control-Theoretic
Perspective

Salar Fattahi, Cedric Josz, Reza Mohammadi, Javad Lavaei, and Somayeh Sojoudi

Abstract—In this paper, we study the landscape of an optimiza-
tion problem whase input data vary aver time. This time-varying
problem consists of infinitely prob-
lems, whose solution is a (nm:(un' over time rather than a
single point. To understand when it is possible to find a global
solution of a time-varying non-convex optimization problem, we
introduce the notion of spurious non-global) local trajectory
as a gmerll]lmﬂlm 1o the rlllljlm of spurious local solution in

iant) We develop an ordinary
differential equation (ODE) which, at limit, characterizes the
spurious local solutions of the time-varying optimization problem.
By building upon this connection, we prove that the absence
of spurious local trajectory is closely related to the transient
behavior of the proposed ODE. In particular, we show that: (1)
if the problem ime-invariant, the spurious local trajectories
are ubiquitous since any strict local minimum is a locally stable
equilibrium point of the ODE, and (2) if the ODE is time-v ng,
the data variation may force all ODE trajectories initialized at
arbitrary local minima at the initial time to gradually converge to
the global solution trajectory. This implies that the natural data
rariation in the problem may automatically trigger escaping local
minima over time.

optimization. This observation naturally gives rise to the
following question

Would fast local-search algorithms escape spurious local
minima in online nonconvex optimization, similar to their time-
invariant counterparts?

In this paper, we attempt to address this question by
developing a control-theoretic framework for analyzing the
landscape of online and time-varying optimization. In partic-
ular. we demonstrate that even if a time-varying optimization
may have undesired point-wise local minima at almost all

times, the variation of its landscape over time would enable
simple local-search algorithms to escape these spurious local
minima. Inspired by this observation, this paper provides a new
machinery to analyze the global landscape of online decision-
making problems by drawing tools from aptimization and
cnntml theory.

consider a class of nonconvex and online optim
problems where the input data varies over time. First, we intro-
duce the notion of spurious local traieciory as a senerall
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Interactions between optimisation and regularisation

- Implicit regularisation of stochastic gradient (based on older
seminal ideas of Rosasco and others)

Implicit Regularization for Optimal Sparse Recovery

Tomas Vaskevi¢ius', Varun Kanade?, Patrick Rebeschini®
! Department of Statistics, > Department of Computer Science
University of Oxford
{tomas.vaskevicius, patrick.rebeschini}@stats.ox.ac.uk
varunk@cs.ox.ac.uk

September 12, 2019

Abstract

We invest]

ate implicit regularization schemes for gradient descent methods applied
to unpenalized least squares regression to solve the problem of reconstructing n sparse

signal from an underdetermined system of linear measurements under the restricted
parametrization vielding a non-convex optimization
problem, we show that prescribed choices of initialization, step size and stopping
time yield a statistically and computationally optimal algorithm that achieves the
minimax rate with the same cost required to read the data up to poly-logarithmic
factors. Beyond minimax optimality, we show that our algorithm adapts to instance
difficulty and yields a dimension-independent rate when the signal-to-noise ratio is
high enough. Key to the compu step
size scheme that adapts to refined estimates of the true solution. We validate our
findings with numerical experiments and compare our algorithm against explicit £;
penalization. Going from hard instances to easy ones, our algorithm is seen to undergo
& phase transition, eventually matehing least squares with an oraele knowledge of the

isometry assumption. For a give

tional efficiency of our method is an incre

22v1 [stat.ML] 11 Sep 2019

true suppart.
uy

= 1 Introduction

=

N Many problems in machine learning, science and engineering involve high-dimensional datasets
— where the dimensionality of the data d is greater than the number of data points n. Lincar

regression with sparsity constraints is an archetypal prablem in this sctting. The goal is to
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Interactions between optimisation and regularisation

- Implicit bias of stochastic gradient

- for linearly separable data, training a linear classifier with
gradient descent on the logistic loss, or any loss with an
exponential tail, implicitly leads to a max-margin linear
classifier for the £>-norm

Journal of Machine Leaming Research 19 (2018) 157 Submitied 4/18; Published 11/18

The Implicit Bias of Gradient Descent on Separable Data

Daniel Soudry DANIEL.SOUDRY @ GMAIL.COM
Elad Hoffer ELAD_HOFFER @ GMAIL.COM
Mor Shpigel Nacson MOR. SHPIGEL @GMAIL.COM

Deparmment of Electrical Engineering Technion

o0 Haifa, 320003, Israel
o Suriya Gunasekar SURIYA@TTIC.EDU
o™~ Nathan Srebro NATI@TTIC.EDU
> Toyota Technological Institute at Chicago

~ Chicago, IHinois 60637, USA
™~ Editor: Leon Bottou
— Abstract
= 3

4 We examine gradicnt descent on unregularized logistic regression problems, with hom
= linear predictors on linearly sej tasets. We show the predictor converges 1o the direction
- of the max-margin (hard margin SVM) solution. The result also generalizes to other monotone de

creasine loss functions with an infimum at infinitv. to multi-class problems. and to tra

ht
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Interactions between optimisation and regularisation

Gradient Methods Never Overfit On Separable Data

Ohad Shamir
Weizmann Institute of Science

Abstract

~ A line of recent works established that when training linear predictors over separable data, using

< gradient methods and exponentially-tailed lo the predictors asymptotically converge in direction to
o the max-margin predictor. As a consequence, the predictors asymptotically do not overfit. However. this

= does not address the question of whether overfitting might occur non-asymptotically, after some bounded

= number of iterations. In this paper, we formally show that standard gradient methods (in particular,
= gradient flow, gradient descent and stochastic gradient descent) never overfit on separable data: If we

- run these methods for T iterations on a dataset of size m, both the empirical risk and the generalization
gl error decrease at an essent optimal rate of O T)up n]l T == n, at which point the generalization
— error remains fixed at an essentially optimal level of O(1/+%m) regardless of how large T is. Along the

‘_; way, we present non-asymptotic bounds on the number of 1 margin violations over the dataset, and prove
] their tightness.

v

= -
— 1 Introduction

> Motivated by empirical observations in the context of neural networks, there is considerable interest nowa-
o0 days in studying the implicit bias of learning algorithms. This refers to the fact that even without any explicit
o regularization or other techniques to avoid overfitting, the dynamics of the learning algorithm itself biases
E its output towards “simple” predictors that generalize well.

- In this paper, \ae consider the implicit bias in a well-known and simple setting, namely learning linear
l:__ predictors (x +— x "w) for binary classification with respect to linearly-separable data. In a recent line of
= works [Soudry et al., 2018, Ji and Telgarsky. 2018b. Nacson et al., 2019a, Ji and Telgarsky, 2019b, Dudik
~ et al., 2020], it was shown that if we attempt to do this by minimizing the empirical risk (average loss)

22

AV

over a dataset, using gradient descent and any exponentially-tailed loss (such as the logistic loss), then the
predictor asymptotically converges in direction to the max-margin predictor with respect to the Euclidean

=
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Interactions between optimisation and regularisation

Implicit bias of stochastic gradient for two layer networks

Proceedings of Machine Learning Rescarch vol 125:1-

33rd Annual Conference on Leamning Theory

Implicit Bias of Gradient Descent for Wide Two-layer Neural
Networks Trained with the Logistic Loss

Lénaic Chizat LENAIC
Laboratoire de Mathématiques d’Orsay, CNRS, Université Pa

CHIZAT @ UNIVERSITE-PARIS-SACLAY.FR
aclay, France

Francis Bach
INRIA, ENS, PSL Research University, Paris, France

NCIS.BACH @ INRIA.FR

020

Editors: Jacob Abemethy and Shivani Agarwal

Abstract

Neural networks trained to minimize the logistic (ak.a. cros
methads are observed to perform well in many supervised c

)Y

-entropy) loss with gradient-based
tion tasks. Towards understanding
this phenomenon, we analyze the training and generalization behavior of infinitely wide two-layer
neural networks with homogeneous a ons. We show that the limits of the gradient flow on
exponentially tailed losses can be fully characterized as a max-margin classifier in a certain non-
Hilbertian space of functions. In presence of hidden low-dimensional structures, the resulting margin

is independent of the ambiant dimension, which leads to strong generalization bounds. In contrast.
training only the output layer implicitly solves a kernel support vector machine, which a priori does
not enjoy such an adaptivity. Our analysis of training is non-quantitative in terms of running time
but we prove computational guarantees in simplified settings by \h[)\\m" x:qulu]Lmu with online
mirror descent. Finally, numerical experiments su, well the practical
behavior of two-layer neural networks with ReLU activations and confirm the statistical benefits of
this implicit bias.

486v4 [math.OC]
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This topic is called

Interpolation

Overparametrisation works despite contradicting the intuition
that "overfitting makes no sense”

Reconciling modern machine-learning practice and
the classical bias-variance trade-off

Mikhail Belkin*>",

SDepiremerc f Comies S ek e Bl THE OGSt el kSR OHL
col

Hsu', Siyuan Ma*, and Soumik Mandal*

Bepartment of S, The Oro tate Universi,
¥ 1002

Colu

Jumbia University, New York, N

Editad by Peter . Bickel, University of California, Berkeley, CA, and appraved July 2, 2019 {recaived for review February 21, 2015)

Breakthroughs in machine learning are rapidly changing science
and society, yet our fundamental understanding of this technol-
gy has lagged far behind. Indeed, one of the central tenets of the
field, the bias-variance trade-off, appears to be at odds with the
shiarved bilwils o meiids iset I wodban meihiri-idming
practice. The bias-variance trade-off im model should
Telonce underfting and overfitting: Rich enough 1o express
milrying ituctive i dete it smple otough tn avold ik
ting spurieus patterns. However, in modern practice, very rich

i St o el e b o exactly fit
interpolate) the data. Classicall, such models would be consid-
ered overfitted, and yet they often obtain high accuracy on test
data. This apparent contradiction has raised questions about the
mathematical foundations of machine learning and their rele-
vance to practitioners. In this paper, we reconcile the classical
understanding and the modern pr: ithin a u

This “ 2

U-shaped bias-variance trade-off curve by showing how increas-
the point of interpolation results in

rfor-

machine-learning models delineates the limits of dlassical analy-
ses and has implications for both the theory and the practice of
machine learning.

machine learning | bias-variance trade-off | neural networks

ing data (i.e.. have large empirical risk) and hence predict poorly
on new data. 2) If # s 100 large, the empirical risk minimizer
may overfit spurious pattens in the training data, resulting in
poor accuracy on new examples (small empirical risk but large
true

The clissical thinking is concerned with finding the “sweet
spot” between underfitting and overfitting. The control of the
funtion cles capecity may b i, vin the choies of 1 (o
picking the neural network architecture), o be implicit
using regularization (e.z, early stopping). When s aulable bal.
ance is achieved, the performance of f, on the training data
is said to generalize to the population P. This is summarized
in the classical U-shaped risk curve shown in Fig. 14 that has
been widely used to guide model selection and is even thoughs
to describe aspects of human decision making (3). The textbook
corollary of this curve is that “a model with zero training error is
verfit fo the i a3 iyl peanesls ool
(ref. 2, p. 221), a view still widely accepted.

oo, i roatimnly, s toodorn mbchine-
learning methods, such as large neural networks and other non-
linear predictors that have very low or zero training risk. Despite
the high function class capacity and near-perfect fi
data, thes; give v
dara. Indeed, this behavior has guided 2 best practice in deep
learning for choosing neural network architectures, specifically
hat the network should be large enough to permit effortless
2ero-loss training (ealled interpolation) of the training data

Moreover, in dir iance trade-
off philosophy, recent empirical evidence indicates that neural

"interpolation”




Interpolation

- Belkin et al. introduced the " double descent curve”
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Interpolation

Montanari et al. resolved this paradox ... for the linear model !
(Uses a lot of random matrix theory in the asymptotic regime)

Surprises in High-Dimensional Ridgeless Least Squares
Interpolation

Trevor Hastie Andrea Montanari Saharon Rosset Ryan J. Tibshirani

Abstract

Interpolators—estimators that achieve 7ero training error—have attracted growing attention in machine leamning.
mainly because state-of-the art neural networks appear to be models of thi i
norm (“ridge ") interpolation in high-dimensional least squares reg o different models for
the feature distribution: a linear 'nu&l whem the feature vectors z; € are obtained by applying a linear transform
RF nlincar model, wher the feature vectors an obtained
i a mairix
quantitative
s, including the

d ¥ i IanLthJl:llnﬂ'.\)mp('h’ﬂml\'t_('\“ z
wa —«.wcml phenomena that have been observed in large-scale neural networks
“double descent” behavior of the prediction risk, and the potential benefits of overparametrization.

1 Introduction

Modem deep learning models involve a huge number of parameters. In nearly all applications of these models, current
practice suggests that we should design the network to be sufficiently complex so that the model (as trained. ty pically.
by gradient descent) interpolates the data, ie.. achieves zero training error. Indeed, in a thought-provoking experiment,
Zhang et al. (2016) showed that state-of-the-art deep neural network architectures can be trained to interpolate the data
even when the actual labels are replaced by entirely random ones.

Despite their enormous complexity, deep neural networks are frequently seen to generalize well, in meaningful
practical problems. At first sight. this seems to defy conventional statistical wisdom: interpolation (vanishing training




Interpolation

Other models in non-parametric regression have been
addressed by Belkin, Rakhlin and Tsybakov

Does data interpolation contradict statistical optimality?

Mikhail Belkin Alexander Ralkhlin Alexandre B. Tsybakov
The Ohio State University MIT CREST, ENSAE
Abstract

We show that learning methods interpolating the training data can achieve optimal rates for
the problems of nonparametric regression and prediction with square loss.

1 Introduction

In this paper, we exhibit estimators that interpolate the data, yet achieve optimal rates of conver-

gence for the problems of nonparametric regression and prediction with square loss. This curions
observation goes against the usual {or, folklore?) intuition that a good statistical procedure should

forego the exact fit to data in favor of a more smooth representation. The family of e

imators
we consider do exhibit a bias-variance t

le-off with a tuning parameter, vet this “r ation’

co-exists in harmony with data interpolation.

Motivation for this work is the recent focus within the machine learning community on the
out-of-sample performance of neural networks. These flexible models are typically trained to [t
the data exactly (either in their sign or in the actual value), yet they predict well on unseen data.
The conundrum has served both as a souree of excitement about the “magical” properties of neural
networks, as well as a call for the development of novel statistical techniques to resolve it.

The aim of this short note is to show that not only can interpolation be a good statistical
procedure, but it can even be optimal in a minimax sense. To the best of our knowledge, such
optimality has not been exhibited before.

Let (X,Y) be a random pair on B? x R with distribution Pyy, and let f(z) = E[¥|X =




Interpolation

The Nadaraya-Watson estimator for a singular kernel K is defined as

Yi if o = X; for some i =1, n

Jalz) =

otherwise.

he0.01 he0.08 b

04 DB BB

Interpolation with K (u) = |lul| ™" I{||u|| € 1}. & = 0.49, and various values of &

Figure: Singular Kernel estimators that interpolate !



New analysis via Neuberger's theorem

A simple analysis of interpolation



New analysis via Neuberger's theorem

Mathematical Model

Let Z; = (X;, Y;) in R¥TL x R, i = 1,..., n be observations drawn
from the following model

Yi = f5(Xi) + i (2)
i=1,...,n, where we assume that

the vectors X; are random and i.i.d., taking values in RY

and the noise vector € = [e1,...,&p]" is sub-Gaussian, with
sub-Gaussian constant denoted by K..

The goal is to estimate f* based on the observation 73, ..., Z,.

The estimation of f* will be based on restricting the search to a
subset F of functions of a Banach space B.



New analysis via Neuberger's theorem

In order to generalise, the estimator should be chosen in the set of
stationary points of the empirical version of the risk R : ¥ — R

defined by
R(f) =E[(Y, £(X))],
where £ : R x R — R satisfies
l(y,y)=0forally € R and

ly,-): R+— R is a strictly convex twice continuously
differentiable nonnegative function.



New analysis via Neuberger's theorem

Let R,(f) denote the empirical risk defined by

Rul) = 5 S UV F(X0), G
i=1

fERM

Then, the Empirical Risk Minimizer will be a solution to

FERM ¢ argmins.» Ro(f). (4)



New analysis via Neuberger's theorem
Assumption

The sample satisties the following separation
¢ 1
_min1 1X; — Xir|l2 > en™ /" (5)
ii'=

with probability larger than or equal to 1 — 9, for some positive
constants ¢, v and for 6 € (0,1).

The Holder exponent v is usually interpreted as a surrogate for the
intrinsic dimension of the data manifold. E.g.,

Intrinsic Dimensionality Estimation of Submanifolds in B?

Matthias Hein MHUTUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics, Tiibingen, Germany

Jean-Yves Audibert AUDIBERTCERTIS.ENPC.FR

CERTIS, ENPC, Paris, France



New analysis via Neuberger's theorem

An handy result from Neuberger about the distance of the solution
of a zero finding problem, i.e. consisting in solving

F(f)=0

to a given initial guess f*



New analysis via Neuberger's theorem

An handy result from Neuberger about the distance of the solution
of a zero finding problem, i.e. consisting in solving

F(f)=0 (corresponding to first order
optimality condition
for the ERM )

to a given initial guess f*
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The Continuous Newton’s Method,
Inverse Functions, and Nash-Moser

J. W. Neuberger

1. INTRODUCTION. The conventional Newton’s method for finding a zero of a
function F : R" — R", assuming that (F'(y))~" exists for at least some y in R", is the
familiar iteration: pick zo in R" and define

an=u—F@) 'Flw) *k=012...),

hoping that zy, Z5. ... converges to a zero of F'. What can stop this process from find-
ing a zero of F? For one thing, there might not be a zero of F. For another, the process
might terminate for some integer k in the event that F'(z;) does not have an inverse.
A domain of attraction corresponding to a given root of F consists of the set of all
starting values Z, that lead. through convergence of z;, 25, . ... to this root. Newton’s
method can lead to chaotic domains of attraction, even for simple choices of F (see
[8]). This can lead to striking pictures but constitutes a nightmare for the numerical
analyst. This fact. if nothing else, leads one to the damped Newton’s method, which
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Theorem (Neuberger's theorem)

Suppose that B, J, and K are three Banach spaces and that B is
compactly embedded in J .

Suppose that F : B — KC is continuous with respect to the
topologies of J and K.

Suppose that f € B, that r > 0, and that for each g in B,(f),
there is an h in B,(0) such that

im ~(F(g + th) — F(s))

t—0+

—F(f).

Then there is f in B,(f) such that F(f) = 0.

For r >0 and u in B, B,(u) and B,(u) will denote the open and
closed balls in B, respectively, with center u and radius r.



New analysis via Neuberger's theorem

We recall that f € F, and d’ € B such that F C B. Let us
compute the directional derivative of R,

. L
DR(F) - H = fim Folf 1) = Ralf)

t—0 t
i 5 e (Y3 FOG) + (X)) — (Y £(X0)
N tl—% t
e 2 liea &2 (Y (X)) t(X) + ¢ 08 (Y, F(X) £2H(X)
t—0 t

with ¢ € [0, 1], and thus

DR Z 0l(Y:, F(X))H (X;).



New analysis via Neuberger's theorem

In the same spirit, we get

DRo(F) - (W ) = f,i 33 £(Yi, F(X0)) W (X))h(X;).
i=1



New analysis via Neuberger's theorem

Based on these computations, Neuberger's theorem resorts to
obtaining a bound on the norm of an appropriate solution d’ to the
following linear system

72 08 (Y, FOG) HOXKX) =~ S BallYi F OO (X)
i=1

for all f € B,(f*) and for all h" € B.



New analysis via Neuberger's theorem

Let 1) denote the bump function

exp(1— %XQ if [|x|I3 <1,
¥(x) = ( 1| ||2> (6)

0 otherwise

and let ¢, = 9Y(-/0).



New analysis via Neuberger's theorem

We will decouple the problem and first solve it in a Sobolev space,
and then approximate the solution by a deep neural network using
the Guhring, Kutyniok and Petersen theorem . ..
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Theorem

Set £ to be the (3 loss, i.e. {(y,z) = 3(y — z) for all y, z in R.
Let Assumption 1 hold. Take any o < cn~'/" such that the ball in
B centered at f* with radius 6K. nl||1s||g C F.

Then, with high probability, there exists a mapping fERM: R9 — R
which is a stationary point of the empirical risk minimisation
problem and which lies at a distance at most

6K nllvsll5

from f*.




New analysis via Neuberger's theorem

Our main result is the following

Theorem

Set { to be the (3 loss, i.e. {(y,z) = 3(y — 2) for all y, z in R.
Let Assumption 1 hold. Assume that ||f*||\yx, < B for some

k € N and p € [1,400|. Assume that d, p, v and n are such that
6Kn'/2=4/VP) |||l o < B.

Then, for any s € [0, 1], with high probability, there exists a deep
neural network fj,: RY — R with

”fVT/ - f*HLP(D) = CKE”I_d/(Vp)HiﬂHWk,p(D)

for some positive constant C = C(d, p, k, B, s)




New analysis via Neuberger's theorem
Theorem

and with
(i) a number L of layers upper bounded by

—k/(k=s)
L < c log, <<CKen1_d/(Vp)H¢‘kaP(D)) )

(ii) a number d + Y"1, Ny of neurons upper bounded by

L —d/(k—s)
d+3 N < c (=P )

(=1l
—d/(v —k/(k—s)
toga ( (Kt ollney) )

which approximately solves the empirical risk minimisation
problem’s first order optimality conditions over the Sobolev class
WkP(D) with W*P(D)-distance at most Kenl_d(”p)HwHWk,p(D) to

its solution set.
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Sketch of the proof
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Notice that for all f € Bs(fyy+), we have

T3 SO FO0) WO = = 37 (% — F0) KX,
i=1

i=1

and that
1 ¢ a2£
- (Y:, £(X;)) W' (X H (X
n 2 g (Vi f(X0) Z

Then, using the fact that £ is the E% loss, Neuberger's condition
reads

n

S HOOA) = 3 KOG (Y= fu- (X))
i=1

i=1
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One possible solution can be obtained by setting
h(Xi) = Yi — fw=(Xi) = &

i=1,...,n, i.e. using a noise interpolating solution (reminiscent
of the work by Belkin, Rakhlin and Tsybakov on singular kernels
previously mentioned).

One simple option is to take

where 1 : RP — R is a kernel function and o > 0 is a bandwidth.



New analysis via Neuberger's theorem

Let

%Zlﬁ(’/a)-

Now, observe that, based on Assumption 1, the functions

Y((x — Xi)/o), and their successive derivatives up to k,
i=1,...,n, have disjoint supports for with probability larger than
or equal to 1 — § as long as o < cn™ /.

We thus obtain that

Ihlls = llellr [[¢o s

Moreover, as is well known for subGaussian vectors, the norm is
controlled by

llell2 < 6Ken.

with probability at least 1 — exp(—n), combining the conclusion of
Theorem 4 follows from Neuberger's Theorem 3.
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The proof for the deep neural network case is completed by using
the approximation result of Guhring, Kutyniok and Petersen.
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The number of layers may have to increase logarithmically
with the number of samples

The total number of parameters blows up polynomially in the
number of samples and exponentially in the dimension of the
problem



New analysis via Neuberger's theorem

Conclusion and perspectives
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- This simple exercice in using quantitative zero finding
theorems such as Neubergers shows that we can easily prove
results that do not blow up with the number of layers with
interpolating networks

- We can easily study local minimisers as well using the same
technique

We would need to explore approximation theory in
unusual /non standard directions:

- improve the Guhring, Kutyniok and Petersen theorem by
introducing the constraint that the network be a flat
minimiser

- This would explain that Stochastic Gradient
methods can find the correct approximation with
large probability (7)
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Some papers:

A finite sample analysis of the double descent phenomenon for
ridge function estimation, Emmanuel Caron and Stephane
Chretien: arXiv preprint arXiv:2007.12882

The double descent phenomenon for Deep Nets, Emmanuel
Caron and Stephane Chretien (soon on Arxiv)


arXiv preprint arXiv:2007.12882
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