Implicit Regularization Properties of Early-Stopped Gradient-Based Algorithms

Varun Kanade

(based on joint work with Tomas Vaškevičius and Patrick Rebeschini)

LMS-Bath Symposium: Mathematics of Machine Learning

August 3 2020

► Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

- ▶ Goal of machine learning: compute $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

- Consider **ERM** + λ **Pen**(*h*)
- Statistics: Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

- Consider **ERM** + λ **Pen**(*h*)
- Statistics: Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

- Consider **ERM** + λ **Pen**(*h*)
- **Statistics:** Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

Explicit

- Consider **ERM** + λ **Pen**(*h*)
- **Statistics:** Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- Consider unpenalized ERM
- Statistics + Optimization: Choose:
 - Parametrization
 - Solver
 - (Hyper)Parameters

- ▶ Goal of machine learning: compute $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

Explicit

- Consider **ERM** + λ **Pen**(*h*)
- **Statistics:** Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- Consider unpenalized ERM
- Statistics + Optimization: Choose:
 - Parametrization
 - Solver
 - (Hyper)Parameters

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

Explicit

- Consider **ERM** + λ **Pen**(*h*)
- **Statistics:** Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- Consider unpenalized ERM
- Statistics + Optimization: Choose:
 - Parametrization
 - Solver
 - (Hyper)Parameters

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

Explicit

- Consider **ERM** + λ **Pen**(*h*)
- **Statistics:** Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- Consider unpenalized ERM
- Statistics + Optimization: Choose:
 - Parametrization
 - Solver
 - (Hyper)Parameters

- ▶ Goal of machine learning: compute $h^{\star} \in \operatorname{argmin}_{h \in \mathcal{H}} \mathbb{E}[\ell(h, Z)]$
- Unknown data distribution leads to minimize **ERM** = $\frac{1}{n} \sum_{i=1}^{n} \ell(h, Z_i)$
- Finite amount of data $(n < \infty)$ leads to necessity of regularization:

Explicit

- Consider **ERM** + λ **Pen**(*h*)
- **Statistics:** Choose penalty λ , **Pen**(h)
- Optimization: (try to) solve it

- Consider unpenalized ERM
- Statistics + Optimization: Choose:
 - Parametrization
 - Solver
 - (Hyper)Parameters

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

For example:

- Statistics:

 $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow \text{error} \lesssim \frac{1}{\sqrt{n}}$ (minimax optimal rates) [Goldenshluger and Tsybakov, 2001, Caponnetto and De Vito, 2007], ...

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

For example:

– Statistics:

 $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow \text{error} \lesssim \frac{1}{\sqrt{n}}$ (minimax optimal rates) [Goldenshluger and Tsybakov, 2001, Caponnetto and De Vito, 2007], ...

- **Optimization:** strongly convex but $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow$ high iteration complexity for GD \Rightarrow Newton?

Explicit

Implicit

Statistics + Optimization:

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

For example:

– Statistics:

 $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow \text{error} \lesssim \frac{1}{\sqrt{n}}$ (minimax optimal rates) [Goldenshluger and Tsybakov, 2001, Caponnetto and De Vito, 2007], ...

- **Optimization:** strongly convex but $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow$ high iteration complexity for GD \Rightarrow Newton?

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

For example:

- Statistics:

 $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow \text{error} \lesssim \frac{1}{\sqrt{n}}$ (minimax optimal rates) [Goldenshluger and Tsybakov, 2001, Caponnetto and De Vito, 2007], ...

- **Optimization:** strongly convex but $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow$ high iteration complexity for GD \Rightarrow Newton?

Implicit

Statistics + Optimization:

Parametrization

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

For example:

- Statistics:

 $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow \text{error} \lesssim \frac{1}{\sqrt{n}}$ (minimax optimal rates) [Goldenshluger and Tsybakov, 2001, Caponnetto and De Vito, 2007], ...

- **Optimization:** strongly convex but $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow$ high iteration complexity for GD \Rightarrow Newton?

Implicit

Statistics + Optimization:

Parametrization

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_2^2$$

• Solver

$$\mathbf{w}_0 = \mathbf{0}$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla \mathcal{L}(\mathbf{w}_t)$$

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

For example:

- Statistics:

 $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow \text{error} \lesssim \frac{1}{\sqrt{n}}$ (minimax optimal rates) [Goldenshluger and Tsybakov, 2001, Caponnetto and De Vito, 2007], ...

- **Optimization:** strongly convex but $\lambda^* \sim \frac{1}{\sqrt{n}} \Rightarrow$ high iteration complexity for GD \Rightarrow Newton?

Implicit

Statistics + Optimization:

Parametrization

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

• Solver

 $\mathbf{w}_0 = \mathbf{0}$ $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla \mathcal{L}(\mathbf{w}_t)$

• **Parameters** most results establish connection at optimality:

 $\eta t^{\star} \sim \frac{1}{\lambda^{\star}}$

[Bühlmann and Yu, 2003, Yao et al., 2007, Bauer et al., 2007, Raskutti et al., 2014],...

But even stronger results for the **optimization path**: (connections already established in prior literature)

- Empirically: [Friedman and Popescu, 2004]
- ▶ Theory: for Gradient Flow $(\eta \rightarrow 0)$, with no assumptions on X, we have: [Suggala et al., 2018, Ali et al., 2019]

Strong Connection between GD and Ridge Regression

This has motivated a lot of research on computationally efficient methods:

- Acceleration
- Stochastic methods
- Mini-batching
- Averaging
- Sketching

► ...

- Sub-sampling
- Preconditioning
- Parallel and distributed architectures

Success story for Ridge Regression. What about sparse recovery?

Explicit

 $\min_{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{n} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{w} \right\|_{1}$

Explicit

 $\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$

Related to our setting:

- Statistics: $\lambda^* \sim \sigma \sqrt{\log d} / \sqrt{n}$ $\Rightarrow \operatorname{error} \leq \sigma \sqrt{k \log d} / \sqrt{n}$ (minimax optimal rates) [Wainwright, 2019]—book

Explicit

 $\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$

Related to our setting:

- Statistics: $\lambda^* \sim \sigma \sqrt{\log d} / \sqrt{n}$ $\Rightarrow \operatorname{error} \leq \sigma \sqrt{k \log d} / \sqrt{n}$ (minimax optimal rates) [Wainwright, 2019]—book
- **Opt:** prox. methods (ISTA, etc.) [Bach et al., 2012]—monograph $\widetilde{O}(1)$ iteration complexity [Agarwal et al., 2010],... $\Rightarrow \widetilde{O}(nd)$ comp. complexity (computational optimality)

Explicit

 $\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$

Related to our setting:

- Statistics: $\lambda^* \sim \sigma \sqrt{\log d} / \sqrt{n}$ $\Rightarrow \operatorname{error} \leq \sigma \sqrt{k \log d} / \sqrt{n}$ (minimax optimal rates) [Wainwright, 2019]—book
- **Opt:** prox. methods (ISTA, etc.) [Bach et al., 2012]—monograph $\widetilde{O}(1)$ iteration complexity [Agarwal et al., 2010],... $\Rightarrow \widetilde{O}(nd)$ comp. complexity (computational optimality)

Explicit

$$\min_{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{n} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{w} \right\|_{1}$$

Most literature on implicit reg. for sparse recovery deals with:

- Limit statements:
 - At convergence: $t
 ightarrow \infty$
 - Inifinitesimal step size: $\eta
 ightarrow 0$
 - Infinitesimal initial. size: lpha
 ightarrow 0
- No noise (or limited noise)

No computational efficiency

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Most literature on implicit reg. for sparse recovery deals with:

- Limit statements:
 - At convergence: $t
 ightarrow \infty$
 - Inifinitesimal step size: $\eta
 ightarrow 0$
 - Infinitesimal initial. size: lpha
 ightarrow 0
- No noise (or limited noise)
- No computational efficiency

Implicit

Literature connected to ℓ_1 -norm:

Coordinate-Descent / AdaBoost: [Hastie et al., 2001, Efron et al., 2004, Rosset et al., 2004, Zhang and Yu, 2005],...

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Most literature on implicit reg. for sparse recovery deals with:

- Limit statements:
 - At convergence: $t
 ightarrow \infty$
 - Inifinitesimal step size: $\eta
 ightarrow 0$
 - Infinitesimal initial. size: lpha
 ightarrow 0
- No noise (or limited noise)
- No computational efficiency

Implicit

Literature connected to ℓ_1 -norm:

- Coordinate-Descent / AdaBoost: [Hastie et al., 2001, Efron et al., 2004, Rosset et al., 2004, Zhang and Yu, 2005],...
- Steepest Descent: [Gunasekar et al., 2018]

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Most literature on implicit reg. for sparse recovery deals with:

- Limit statements:
 - At convergence: $t
 ightarrow \infty$
 - Inifinitesimal step size: $\eta
 ightarrow 0$
 - Infinitesimal initial. size: lpha
 ightarrow 0
- No noise (or limited noise)
- No computational efficiency

Implicit

Literature connected to ℓ_1 -norm:

- Coordinate-Descent / AdaBoost: [Hastie et al., 2001, Efron et al., 2004, Rosset et al., 2004, Zhang and Yu, 2005],...
- Steepest Descent: [Gunasekar et al., 2018]
 - Gradient Flow: Low-rank matrix recovery with param. W = UU^T
 [Gunasekar et al., 2017, Li et al., 2018] RIP

conjecture: for $\mathbf{w}^{\checkmark} \geq 0$ and $\mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$ GD on \mathbf{u}_t yields min. ℓ_1 -norm solution

Explicit

$$\min_{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{n} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{w} \right\|_{1}$$

Most literature on implicit reg. for sparse recovery deals with:

- Limit statements:
 - At convergence: $t
 ightarrow \infty$
 - Inifinitesimal step size: $\eta
 ightarrow 0$
 - Infinitesimal initial. size: lpha
 ightarrow 0
- No noise (or limited noise)
- No computational efficiency

Implicit

Literature connected to ℓ_1 -norm:

- Coordinate-Descent / AdaBoost: [Hastie et al., 2001, Efron et al., 2004, Rosset et al., 2004, Zhang and Yu, 2005],...
- Steepest Descent: [Gunasekar et al., 2018]
- Gradient Flow: Low-rank matrix recovery with param. W = UU^T
 [Gunasekar et al., 2017, Li et al., 2018] RIP

conjecture: for $\mathbf{w}^{\checkmark} \geq 0$ and $\mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$ GD on \mathbf{u}_t yields min. ℓ_1 -norm solution

Gradient Descent: Zhao et al. [2019] (concurrent work, more on this later)

Explicit

$$\min_{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{n} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{w} \right\|_{1}$$

Most literature on implicit reg. for sparse recovery deals with:

- Limit statements:
 - At convergence: $t
 ightarrow \infty$
 - Inifinitesimal step size: $\eta
 ightarrow 0$
 - Infinitesimal initial. size: lpha
 ightarrow 0
- No noise (or limited noise)
- No computational efficiency

Implicit

Literature connected to ℓ_1 -norm:

- Coordinate-Descent / AdaBoost: [Hastie et al., 2001, Efron et al., 2004, Rosset et al., 2004, Zhang and Yu, 2005],...
- Steepest Descent: [Gunasekar et al., 2018]
- Gradient Flow: Low-rank matrix recovery with param. W = UU^T
 [Gunasekar et al., 2017, Li et al., 2018] RIP

conjecture: for $\mathbf{w}^{\checkmark} \geq 0$ and $\mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$ GD on \mathbf{u}_t yields min. ℓ_1 -norm solution

 Gradient Descent: Zhao et al. [2019] (concurrent work, more on this later)

Q. Can build a theory of early stopping for optimal noisy sparse recovery?

Explicit

Implicit

 $\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$

Explicit

Implicit

 $\min_{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{n} \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{w} \right\|_{1}$

Parametrization

Explicit

Implicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Parametrization

$$\mathcal{L}(\mathbf{u}, \mathbf{v}) = \frac{1}{n} \left\| \mathbf{X} (\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y} \right\|_{2}^{2}$$

Explicit

Implicit

 $\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$

Parametrization

$$\mathcal{L}(\mathbf{u}, \mathbf{v}) = \frac{1}{n} \| \mathbf{X}(\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y} \|_{2}^{2}$$

• Solver

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{2}^{2}$$

Implicit

Parametrization

$$\mathcal{L}(\mathbf{u},\mathbf{v}) = \frac{1}{n} \|\mathbf{X}(\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y}\|_{2}^{2}$$

$$\mathbf{u}_{0} = \mathbf{v}_{0} = \boldsymbol{\alpha}\mathbf{1}$$
$$\mathbf{u}_{t+1} = \mathbf{u}_{t} - \eta \frac{\partial \mathcal{L}(\mathbf{u}_{t}, \mathbf{v}_{t})}{\partial \mathbf{u}_{t}}$$
$$\mathbf{v}_{t+1} = \mathbf{v}_{t} - \eta \frac{\partial \mathcal{L}(\mathbf{u}_{t}, \mathbf{v}_{t})}{\partial \mathbf{v}_{t}}$$

 $\mathbf{w}_{t+1} = \mathbf{u}_{t+1} \odot \mathbf{u}_{t+1} - \mathbf{v}_{t+1} \odot \mathbf{v}_{t+1}$
Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Intuition:

- Let w_t = u_t ⊙ u_t
 GD is tied to ℓ₂ geometry
- GD on **u** should be tied to ℓ_1 for **w**:

$$\|\mathbf{u}_t\|_2^2 = \|\mathbf{w}_t\|_1$$

Implicit

Parametrization

$$\mathcal{L}(\mathbf{u},\mathbf{v}) = \frac{1}{n} \|\mathbf{X}(\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y}\|_{2}^{2}$$

$$\mathbf{u}_{0} = \mathbf{v}_{0} = \boldsymbol{\alpha} \mathbf{1}$$
$$\mathbf{u}_{t+1} = \mathbf{u}_{t} - \eta \frac{\partial \mathcal{L}(\mathbf{u}_{t}, \mathbf{v}_{t})}{\partial \mathbf{u}_{t}}$$
$$\mathbf{v}_{t+1} = \mathbf{v}_{t} - \eta \frac{\partial \mathcal{L}(\mathbf{u}_{t}, \mathbf{v}_{t})}{\partial \mathbf{v}_{t}}$$

$$\mathbf{w}_{t+1} = \mathbf{u}_{t+1} \odot \mathbf{u}_{t+1} - \mathbf{v}_{t+1} \odot \mathbf{v}_{t+1}$$

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Intuition:

- Let w_t = u_t ⊙ u_t
 GD is tied to ℓ₂ geometry
- GD on **u** should be tied to ℓ_1 for **w**:

$$\|\mathbf{u}_t\|_2^2 = \|\mathbf{w}_t\|_1$$

Implicit

Parametrization

$$\mathcal{L}(\mathbf{u},\mathbf{v}) = \frac{1}{n} \|\mathbf{X}(\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y}\|_{2}^{2}$$

$$\begin{aligned} \mathbf{u}_0 &= \mathbf{v}_0 = \boldsymbol{\alpha} \mathbf{1} \\ \mathbf{u}_{t+1} &= \mathbf{u}_t - \eta \frac{\partial \mathcal{L}(\mathbf{u}_t, \mathbf{v}_t)}{\partial \mathbf{u}_t} \\ \mathbf{v}_{t+1} &= \mathbf{v}_t - \eta \frac{\partial \mathcal{L}(\mathbf{u}_t, \mathbf{v}_t)}{\partial \mathbf{v}_t} \end{aligned}$$

 $\mathbf{w}_{t+1} = \mathbf{u}_{t+1} \odot \mathbf{u}_{t+1} - \mathbf{v}_{t+1} \odot \mathbf{v}_{t+1}$

Parameters for minimax results:

Explicit

$$\min_{\mathbf{w}\in\mathbb{R}^{d}}\frac{1}{n}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1}$$

Intuition:

- Let w_t = u_t ⊙ u_t
 GD is tied to ℓ₂ geometry
 GD on u should be tied to ℓ₁ for w:

$$\|\mathbf{u}_t\|_2^2 = \|\mathbf{w}_t\|_1$$

Implicit

Parametrization

$$\mathcal{L}(\mathbf{u},\mathbf{v}) = \frac{1}{n} \|\mathbf{X}(\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y}\|_{2}^{2}$$

$$\mathbf{u}_0 = \mathbf{v}_0 = \boldsymbol{\alpha} \mathbf{1}$$
$$\mathbf{u}_{t+1} = \mathbf{u}_t - \eta \frac{\partial \mathcal{L}(\mathbf{u}_t, \mathbf{v}_t)}{\partial \mathbf{u}_t}$$
$$\mathbf{v}_{t+1} = \mathbf{v}_t - \eta \frac{\partial \mathcal{L}(\mathbf{u}_t, \mathbf{v}_t)}{\partial \mathbf{v}_t}$$

 $\mathbf{w}_{t+1} = \mathbf{u}_{t+1} \odot \mathbf{u}_{t+1} - \mathbf{v}_{t+1} \odot \mathbf{v}_{t+1}$

Parameters for minimax results:

$$\frac{\eta t^{\star}}{\log \frac{1}{\alpha}} \sim \frac{1}{\lambda^{\star}}$$

but optimization path is different..

For minimax rates, we can prove:

$$\frac{\eta t^\star}{\log \frac{1}{\alpha}} \sim \frac{1}{\lambda^\star}$$

But opt. paths and properties of estimators (GD vs. Lasso) are different

On Parametrization and Multiplicative Updates

Parametrization previously used in:

- Hoff [2017]: to turn (convex) non-smooth program into (non-convex) smooth
- Gunasekar et al. [2017]: to address matrix sensing

On Parametrization and Multiplicative Updates

Parametrization previously used in:

- Hoff [2017]: to turn (convex) non-smooth program into (non-convex) smooth
- Gunasekar et al. [2017]: to address matrix sensing

Parameterization turns additive updates into multiplicative updates:

$$\mathbf{u}_{t+1} = \mathbf{u}_t \odot \left(\mathbb{1} - 4\eta \left(\frac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X} \left(\mathbf{w}_t - \mathbf{w}^\star \right) - \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right) \right)$$
$$\mathbf{v}_{t+1} = \mathbf{v}_t \odot \left(\mathbb{1} + 4\eta \left(\frac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X} \left(\mathbf{w}_t - \mathbf{w}^\star \right) - \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right) \right)$$

On Parametrization and Multiplicative Updates

Parametrization previously used in:

- Hoff [2017]: to turn (convex) non-smooth program into (non-convex) smooth
- Gunasekar et al. [2017]: to address matrix sensing

Parameterization turns additive updates into multiplicative updates:

$$\mathbf{u}_{t+1} = \mathbf{u}_t \odot \left(\mathbb{1} - 4\eta \left(\frac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X} \left(\mathbf{w}_t - \mathbf{w}^\star \right) - \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right) \right)$$
$$\mathbf{v}_{t+1} = \mathbf{v}_t \odot \left(\mathbb{1} + 4\eta \left(\frac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X} \left(\mathbf{w}_t - \mathbf{w}^\star \right) - \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right) \right)$$

• Compare to updates on canonical parametrization $\mathcal{L}(\mathbf{w})$ (for Ridge):

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla \mathcal{L}(\mathbf{w}_t) = \mathbf{w}_t - \frac{2\eta}{n} \left(\mathbf{X}^\mathsf{T} \mathbf{X} (\mathbf{w}_t - \mathbf{w}^\star) - \mathbf{X}^\mathsf{T} \boldsymbol{\xi} \right)$$

Similar to Lasso: Sparse iterates/solutions, minimax rates

Similar to Lasso: Sparse iterates/solutions, minimax rates

Different than Lasso:

Similar to Lasso: Sparse iterates/solutions, minimax rates

Different than Lasso:

Coordinates fitted one-by-one

Similar to Lasso: Sparse iterates/solutions, minimax rates

Different than Lasso:

- Coordinates fitted one-by-one
- **Instance adaptivity** for high signal-to-noise (beyond minimax; no $\log d$ bias)

Similar to Lasso: Sparse iterates/solutions, minimax rates

Different than Lasso:

- Coordinates fitted one-by-one
- **Instance adaptivity** for high signal-to-noise (beyond minimax; no $\log d$ bias)
- Comput. optimality via early stopping (model selection via GD iterates)

Noiseless Setting

Empirical evidence that:

- Monotonicity: Training time controls complexity of solution (ℓ_1 -norm)
- At convergence GD yields min. l₁-norm solution (consistent with conjecture of Gradient Flow in [Gunasekar et al., 2017])

Noisy Setting

Noisy setting is fundamentally different: early stopping is needed

 ℓ_1 regularization?, $\sigma = 2$

Training Error: $\frac{1}{n} \|\mathbf{X}w_t - y\|_2^2$

1. Assume $||w^*||_0 = k$

1. Assume $\|w^{\star}\|_{0} = k$ 2. Assume \mathbf{X}/\sqrt{n} satisfy RIP with $\delta = \widetilde{O}(1/\sqrt{k})$, namely, $(1-\delta) \|\mathbf{w}\|_{2}^{2} \leq \|\mathbf{X}\mathbf{w}/\sqrt{n}\|_{2}^{2} \leq (1+\delta) \|\mathbf{w}\|_{2}^{2}$ for any (k+1)-sparse $\mathbf{w} \in \mathbb{R}^{d}$

• Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$

• Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$

▶ Pick any $\varepsilon \in (0,1)$

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)
- Set the learning rate $\eta \leq \frac{1}{20w_{\max}^*}$ (to prevent explosion)

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)
- Set the learning rate $\eta \leq \frac{1}{20w_{\max}^*}$ (to prevent explosion)

Lemma: w^{\star}_{\max} can be estimated up to factor 2 with cost nd

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)
- Set the learning rate $\eta \leq \frac{1}{20w_{\max}^*}$ (to prevent explosion)

Lemma: w^{\star}_{\max} can be estimated up to factor 2 with cost nd

Theorem (Vaskevicius, Kanade, Rebeschini 2019)

After

$$t^{\star} = O\left(\frac{w_{\max}^{\star}}{w_{\min}^{\star} \vee \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty} \vee \varepsilon} \cdot \frac{1}{\eta w_{\max}^{\star}} \cdot \log \frac{1}{\alpha}\right)$$

iterations,

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)
- Set the learning rate $\eta \leq \frac{1}{20w_{\max}^*}$ (to prevent explosion)

Lemma: w^{\star}_{\max} can be estimated up to factor 2 with cost nd

Theorem (Vaskevicius, Kanade, Rebeschini 2019)

After

$$t^{\star} = O\left(\frac{w_{\max}^{\star}}{w_{\min}^{\star} \vee \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \boldsymbol{\xi}\right\|_{\infty} \vee \boldsymbol{\varepsilon}} \cdot \frac{1}{\eta w_{\max}^{\star}} \cdot \log \frac{1}{\alpha}\right)$$

iterations, the GD iterate $\mathbf{w}_{t^{\star}}$ satisfies

$$\left\|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S^{c}}\right\|_{\infty} \lesssim \sqrt{\alpha} < \frac{\varepsilon}{d}$$

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)
- Set the learning rate $\eta \leq \frac{1}{20 w_{\max}^*}$ (to prevent explosion)

Lemma: w^{\star}_{\max} can be estimated up to factor 2 with cost nd

Theorem (Vaskevicius, Kanade, Rebeschini 2019)

After

$$t^{\star} = O\left(\frac{w_{\max}^{\star}}{w_{\min}^{\star} \vee \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \boldsymbol{\xi}\right\|_{\infty} \vee \varepsilon} \cdot \frac{1}{\eta w_{\max}^{\star}} \cdot \log \frac{1}{\alpha}\right)$$

iterations, the GD iterate $\mathbf{w}_{t^{\star}}$ satisfies

$$\begin{split} \|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S^{c}}\|_{\infty} &\lesssim \sqrt{\alpha} < \frac{\varepsilon}{d} \\ \|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S} - \mathbf{w}^{\star}\|_{\infty} &\lesssim \begin{cases} \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi\right\|_{\infty} \lor \varepsilon & \text{always holds} \end{cases} \end{split}$$

- Define $w_{\max}^{\star} = \max_i |w_i^{\star}|$ and $w_{\min}^{\star} = \min_{i:w_i^{\star} \neq 0} |w_i^{\star}|$
- ▶ Pick any $\varepsilon \in (0,1)$
- ► Set initialization size $0 < \alpha < \frac{\varepsilon^2}{(2d+1)^2 \vee (\boldsymbol{w}_{\max}^*)^2}$ (poly. in param.)
- Set the learning rate $\eta \leq \frac{1}{20 w_{\max}^*}$ (to prevent explosion)

Lemma: w^{\star}_{\max} can be estimated up to factor 2 with cost nd

Theorem (Vaskevicius, Kanade, Rebeschini 2019)

After

$$t^{\star} = O\left(\frac{w_{\max}^{\star}}{w_{\min}^{\star} \vee \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \boldsymbol{\xi}\right\|_{\infty} \vee \boldsymbol{\varepsilon}} \cdot \frac{1}{\eta w_{\max}^{\star}} \cdot \log \frac{1}{\alpha}\right)$$

iterations, the GD iterate $\mathbf{w}_{t^{\star}}$ satisfies

$$\begin{aligned} \|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S^{c}}\|_{\infty} &\lesssim \sqrt{\alpha} < \frac{\varepsilon}{d} \\ \|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S} - \mathbf{w}^{\star}\|_{\infty} &\lesssim \begin{cases} \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty} \lor \varepsilon & \text{always holds} \\ \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi \odot \mathbf{1}_{S}\right\|_{\infty} \lor \varepsilon & \text{if } w_{\min}^{\star} \gtrsim \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty} \end{aligned}$$

Corollary (Noiseless Recovery) Let $\xi = 0$. Then GD yields $\|\mathbf{w}_{t^*} - \mathbf{w}^*\|_2^2 \lesssim k\varepsilon^2$

Corollary (Minimax Rates in the Noisy Setting)

Let ξ have i.i.d. σ^2 -sub-Gaussian entries.

Corollary (Noiseless Recovery) Let $\xi = 0$. Then GD yields $\|\mathbf{w}_{t^*} - \mathbf{w}^*\|_2^2 \lesssim k\varepsilon^2$

Corollary (Minimax Rates in the Noisy Setting)

Let ξ have i.i.d. σ^2 -sub-Gaussian entries. Let $\varepsilon = 4\sqrt{\frac{\sigma^2 \log(2d)}{n}}$.

Corollary (Noiseless Recovery) Let $\xi = 0$. Then GD yields $\|\mathbf{w}_{t^*} - \mathbf{w}^*\|_2^2 \lesssim k\varepsilon^2$

Corollary (Minimax Rates in the Noisy Setting)

Let ξ have i.i.d. σ^2 -sub-Gaussian entries. Let $\varepsilon = 4\sqrt{\frac{\sigma^2 \log(2d)}{n}}$. Then,

$$t^{\star} = O\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma\sqrt{\log d}} \cdot \log \frac{1}{\alpha}\right) = \widetilde{O}\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma}\right)$$

Corollary (Noiseless Recovery) Let $\xi = 0$. Then GD yields $\|\mathbf{w}_{t^*} - \mathbf{w}^*\|_2^2 \lesssim k\varepsilon^2$

Corollary (Minimax Rates in the Noisy Setting)

Let ξ have i.i.d. σ^2 -sub-Gaussian entries. Let $\varepsilon = 4\sqrt{\frac{\sigma^2 \log(2d)}{n}}$. Then,

$$t^{\star} = O\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma\sqrt{\log d}} \cdot \log \frac{1}{\alpha}\right) = \widetilde{O}\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma}\right)$$

and, with probability at least $1 - 1/(8d^3)$, GD yields

$$\left\|\mathbf{w}_{t^{\star}} - \mathbf{w}^{\star}\right\|_{2}^{2} \lesssim \frac{k\sigma^{2}\log d}{n}$$

Corollary (Noiseless Recovery) Let $\xi = 0$. Then GD yields $\|\mathbf{w}_{t^{\star}} - \mathbf{w}^{\star}\|_{2}^{2} \lesssim k\varepsilon^{2}$

Corollary (Minimax Rates in the Noisy Setting)

Let ξ have i.i.d. σ^2 -sub-Gaussian entries. Let $\varepsilon = 4\sqrt{\frac{\sigma^2 \log(2d)}{n}}$. Then,

$$t^{\star} = O\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma\sqrt{\log d}} \cdot \log \frac{1}{\alpha}\right) = \widetilde{O}\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma}\right)$$

and, with probability at least $1 - 1/(8d^3)$, GD yields

$$\left\|\mathbf{w}_{t^{\star}} - \mathbf{w}^{\star}\right\|_{2}^{2} \lesssim \frac{k\sigma^{2}\log d}{n}$$

ε controls the size of the smallest coordinates of w^{*} that GD can recover
 To achieve minimax rates, GD has to recover everything as big as ||¹/_nX^Tξ||_∞
$\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$

 $\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$

▶ By **RIP** $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \approx \mathbf{I}$ for sparse vectors. Assume $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I}$

- $\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$
- ▶ By **RIP** $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \approx \mathbf{I}$ for sparse vectors. Assume $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I}$
- Each coordinate evolves independently of the others as:

 $\mathbf{w}_{t+1} = \mathbf{w}_t \odot (\mathbf{1} - 4\eta(\mathbf{w}_t - \mathbf{w}^{\star} + \mathbf{X}^{\mathsf{T}} \xi/n))^2$

- $\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$
- ▶ By **RIP** $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \approx \mathbf{I}$ for sparse vectors. Assume $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I}$
- Each coordinate evolves independently of the others as:

 $\mathbf{w}_{t+1} = \mathbf{w}_t \odot (\mathbf{1} - 4\eta(\mathbf{w}_t - \mathbf{w}^{\star} + \mathbf{X}^{\mathsf{T}}\xi/n))^2$

Hence we only need to understand one-dimensional sequences

$$x_{t+1} = x_t (1 - 4\eta (x_t - x^*))^2$$
 with $x_0 = \alpha^2$

- $\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$
- ▶ By **RIP** $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \approx \mathbf{I}$ for sparse vectors. Assume $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I}$
- Each coordinate evolves independently of the others as:

$$\mathbf{w}_{t+1} = \mathbf{w}_t \odot (\mathbf{1} - 4\eta(\mathbf{w}_t - \mathbf{w}^* + \mathbf{X}^\mathsf{T}\xi/n))^2$$

Hence we only need to understand one-dimensional sequences

$$x_{t+1} = x_t (1 - 4\eta (x_t - x^{\star}))^2$$
 with $x_0 = \alpha^2$

▶ **Prop.** Let $0 < \alpha^2 \le \frac{x^{\star}}{2}$, $\eta \lesssim 1/x^{\star}$. Given $\varepsilon > 0$ and $t \gtrsim \frac{1}{\eta x^{\star}} \log \frac{(x^{\star})^2}{\alpha^2 \varepsilon}$:

$$x^\star - \varepsilon \le x_t \le x^\star$$

- $\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$
- ▶ By **RIP** $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \approx \mathbf{I}$ for sparse vectors. Assume $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I}$
- Each coordinate evolves independently of the others as:

$$\mathbf{w}_{t+1} = \mathbf{w}_t \odot (\mathbf{1} - 4\eta(\mathbf{w}_t - \mathbf{w}^{\star} + \mathbf{X}^{\mathsf{T}}\xi/n))^2$$

Hence we only need to understand one-dimensional sequences

$$x_{t+1} = x_t (1 - 4\eta (x_t - x^{\star}))^2$$
 with $x_0 = \alpha^2$

▶ **Prop.** Let $0 < \alpha^2 \le \frac{x^*}{2}$, $\eta \lesssim 1/x^*$. Given $\varepsilon > 0$ and $t \gtrsim \frac{1}{\eta x^*} \log \frac{(x^*)^2}{\alpha^2 \varepsilon}$:

$$x^\star - \varepsilon \le x_t \le x^\star$$

► The *i*-th coord. converges in $O(\frac{1}{\eta | \boldsymbol{w}_i^* + (\mathbf{X}^\mathsf{T} \boldsymbol{\xi})_i / \boldsymbol{n} |} \log \frac{| \boldsymbol{w}_i^* + (\mathbf{X}^\mathsf{T} \boldsymbol{\xi})_i / \boldsymbol{n} |^2}{\alpha^2 \varepsilon})$ iterations

- $\blacktriangleright \text{ Let } \mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$
- ▶ By **RIP** $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \approx \mathbf{I}$ for sparse vectors. Assume $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I}$
- Each coordinate evolves independently of the others as:

$$\mathbf{w}_{t+1} = \mathbf{w}_t \odot (\mathbf{1} - 4\eta(\mathbf{w}_t - \mathbf{w}^{\star} + \mathbf{X}^{\mathsf{T}}\xi/n))^2$$

Hence we only need to understand one-dimensional sequences

$$x_{t+1} = x_t (1 - 4\eta (x_t - x^{\star}))^2$$
 with $x_0 = \alpha^2$

▶ **Prop.** Let $0 < \alpha^2 \le \frac{x^*}{2}$, $\eta \lesssim 1/x^*$. Given $\varepsilon > 0$ and $t \gtrsim \frac{1}{\eta x^*} \log \frac{(x^*)^2}{\alpha^2 \varepsilon}$:

$$x^{\star} - \varepsilon \le x_t \le x^{\star}$$

► The *i*-th coord. converges in $O(\frac{1}{\eta | \boldsymbol{w}_i^* + (\mathbf{X}^\mathsf{T} \boldsymbol{\xi})_i / \boldsymbol{n} |} \log \frac{| \boldsymbol{w}_i^* + (\mathbf{X}^\mathsf{T} \boldsymbol{\xi})_i / \boldsymbol{n} |^2}{\alpha^2 \varepsilon})$ iterations

Hence, all coordinates converge exponentially fast at different rates

• Sequence fitting signal: $x_{t+1} = x_t(1 - 4\eta(x_t - x^*))^2$

• Sequence fitting signal: $x_{t+1} = x_t(1 - 4\eta(x_t - x^*))^2$

• Sequence fitting noise: $y_{t+1} = y_t (1 - 4\eta (y_t - y^*))^2$ with $y^* = \left\| \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right\|_{\infty}$

- Sequence fitting signal: $x_{t+1} = x_t(1 4\eta(x_t x^*))^2$
- Sequence fitting noise: $y_{t+1} = y_t (1 4\eta (y_t y^*))^2$ with $y^* = \left\| \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right\|_{\infty}$
- **Goal:** fit the sequence $(x_t)_{t\geq 0}$ to x^* within ε error before $(y_t)_{t\geq 0}$ exceeds α

- Sequence fitting signal: $x_{t+1} = x_t(1 4\eta(x_t x^*))^2$
- Sequence fitting noise: $y_{t+1} = y_t (1 4\eta (y_t y^*))^2$ with $y^* = \left\| \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right\|_{\infty}$
- **Goal:** fit the sequence $(x_t)_{t\geq 0}$ to x^* within ε error **before** $(y_t)_{t\geq 0}$ exceeds α

• If $x^* \gtrsim y^*$, then for any $\varepsilon > 0$ there is α small enough so that $T^x_{x^*-\varepsilon} \leq T^y_{\alpha}$:

(a) α too large

(b) α small enough: signal fitted before noise goes above α

- Sequence fitting signal: $x_{t+1} = x_t(1 4\eta(x_t x^*))^2$
- Sequence fitting noise: $y_{t+1} = y_t (1 4\eta (y_t y^*))^2$ with $y^* = \left\| \frac{1}{n} \mathbf{X}^\mathsf{T} \xi \right\|_{\infty}$
- **Goal:** fit the sequence $(x_t)_{t\geq 0}$ to x^* within ε error **before** $(y_t)_{t\geq 0}$ exceeds α

• If $x^* \gtrsim y^*$, then for any $\varepsilon > 0$ there is α small enough so that $T^x_{x^*-\varepsilon} \leq T^y_{\alpha}$:

(a) α too large

(b) α small enough: signal fitted before noise goes above α

BY SAME IDEA: GD fits coordinates one by one!

Constant Step Size yields $O(\sqrt{n})$ Iteration Complexity

Our theorem prescribes

$$t^{\star} = O\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma\sqrt{\log d}} \cdot \log \frac{1}{\alpha}\right) = \widetilde{O}\left(\frac{w_{\max}^{\star}\sqrt{n}}{\sigma}\right)$$

which yields a total cost $\tilde{O}(n^{3/2}d)$, not optimal: cost of reading data is O(nd)

Figure: $n = 100k^2$, for k = 1, 1.5, 2, 2.5, 3, 3.5, 4

Q: Can speed up convergence and get computational optimality (mod log terms)?

Small Step Size Hurts Fitting Small Coordinates

Different coordinates are fitted at different rates: the smaller the later are fitted.

Figure: $\mathbf{w}^* = (64, 32, 16, 8, 4, 2, 1, 0, \dots, 0)$. Algorithm with constant step size spends approximately twice the time to fit each coordinate that the previous one

Small Step Size Hurts Fitting Small Coordinates

Different coordinates are fitted at different rates: the smaller the later are fitted.

Figure: $\mathbf{w}^* = (64, 32, 16, 8, 4, 2, 1, 0, \dots, 0)$. Algorithm with constant step size spends approximately twice the time to fit each coordinate that the previous one

IDEA: Use different learning rates for different coordinates

- ► If RIP exact and no noise, then $\eta_i \sim \frac{1}{w_i^*}$ would yield convergence in $O(\log \frac{w_i^*}{\alpha})$
- We need refined estimates of w_i^{\star} for each coordinate *i*

Increasing Step Sizes + Early Stopping ⇒ Computational Optimality

• Estimate w_{max}^{\star} up to factor 2 in time O(nd) (Lemma)

- Estimate w_{max}^{\star} up to factor 2 in time O(nd) (Lemma)
- For $i = 1, \ldots, d$ set $\eta_i \asymp 1/w_{\max}^{\star}$ and C = 1/8

- Estimate w_{\max}^{\star} up to factor 2 in time O(nd) (Lemma)
- For $i = 1, \ldots, d$ set $\eta_i \asymp 1/w_{\max}^{\star}$ and C = 1/8
- Repeat:
 - 1. Run gradient descent for $\Omega(\log \alpha^{-1})$ iterations

- Estimate w_{max}^{\star} up to factor 2 in time O(nd) (Lemma)
- For $i = 1, \ldots, d$ set $\eta_i \asymp 1/w_{\max}^{\star}$ and C = 1/8
- Repeat:
 - 1. Run gradient descent for $\Omega(\log \alpha^{-1})$ iterations
 - 2. By this time for all i such that $|w_i^\star| > w_{\max}^\star/2$ we have $|w_{t,i}| > C w_{\max}^\star$

- Estimate w_{max}^{\star} up to factor 2 in time O(nd) (Lemma)
- For $i = 1, \ldots, d$ set $\eta_i \asymp 1/w_{\max}^{\star}$ and C = 1/8
- Repeat:
 - 1. Run gradient descent for $\Omega(\log \alpha^{-1})$ iterations
 - 2. By this time for all i such that $|w_i^{\star}| > w_{\max}^{\star}/2$ we have $|w_{t,i}| > Cw_{\max}^{\star}$
 - 3. For all *i* such that $|w_{t,i}| \leq C w_{\max}^{\star}$ double the step size η_i

Increasing Step Sizes + Early Stopping ⇒ Computational Optimality

- Estimate w_{max}^{\star} up to factor 2 in time O(nd) (Lemma)
- For $i = 1, \ldots, d$ set $\eta_i \asymp 1/w_{\max}^{\star}$ and C = 1/8

Repeat:

- 1. Run gradient descent for $\Omega(\log \alpha^{-1})$ iterations
- 2. By this time for all i such that $|w_i^{\star}| > w_{\max}^{\star}/2$ we have $|w_{t,i}| > Cw_{\max}^{\star}$
- 3. For all *i* such that $|w_{t,i}| \leq Cw_{\max}^*$ double the step size η_i
- 4. Divide C by 2 and go back to step 1

Increasing Step Sizes + Early Stopping ⇒ Computational Optimality

- Estimate w_{max}^{\star} up to factor 2 in time O(nd) (Lemma)
- For $i = 1, \ldots, d$ set $\eta_i \asymp 1/w_{\max}^{\star}$ and C = 1/8

Repeat:

- 1. Run gradient descent for $\Omega(\log \alpha^{-1})$ iterations
- 2. By this time for all i such that $|w_i^{\star}| > w_{\max}^{\star}/2$ we have $|w_{t,i}| > Cw_{\max}^{\star}$
- 3. For all *i* such that $|w_{t,i}| \leq Cw_{\max}^*$ double the step size η_i
- 4. Divide C by 2 and go back to step 1

Theorem

Using the increasing step sizes scheme, all previous results hold with

$$t^{\star} = O\left(\log\left(rac{w_{\max}^{\star}\sqrt{n}}{\sigma\sqrt{\log d}}
ight)\lograc{1}{lpha}
ight)$$

Iteration complexity $\widetilde{O}(1) \Rightarrow$ total computational complexity $\widetilde{O}(nd)$

Computational Optimality

Figure: $\mathbf{w}^* = (64, 32, 16, 8, 4, 2, 1, 0, \dots, 0)$. Algorithm with increasing step sizes fits each coordinate at approximately the same number of iterations

Computational Optimality

Gradient updates using Hadamard parametrization:

$$\mathbf{u}_{t+1} = \mathbf{u}_t \odot \left(\mathbb{1} - 4\eta \left(\underbrace{\frac{1}{n} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}_t - \mathbf{y})}_{=\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})} \right) \right)$$
$$\mathbf{v}_{t+1} = \mathbf{v}_t \odot \left(\mathbb{1} + 4\eta \left(\frac{1}{n} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}_t - \mathbf{y}) \right) \right)$$

Gradient updates using Hadamard parametrization:

$$\mathbf{u}_{t+1} = \mathbf{u}_t \odot \left(\mathbb{1} - 4\eta \left(\frac{1}{n} \mathbf{X}^\mathsf{T}(\mathbf{X}\mathbf{w}_t - \mathbf{y}) \right) \right)$$
$$\mathbf{v}_{t+1} = \mathbf{v}_t \odot \left(\mathbb{1} + 4\eta \left(\frac{1}{n} \mathbf{X}^\mathsf{T}(\mathbf{X}\mathbf{w}_t - \mathbf{y}) \right) \right)$$

For small η these updates can be written as:

 $\mathbf{w}_{t+1} = \mathbf{w}_t^+ \odot \exp\left(-\eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)\right) - \mathbf{w}_t^- \odot \exp\left(\eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)\right)$

Gradient updates using Hadamard parametrization:

$$\mathbf{u}_{t+1} = \mathbf{u}_t \odot \left(\mathbb{1} - 4\eta \left(\frac{1}{n} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}_t - \mathbf{y}) \right) \right)$$
$$\mathbf{v}_{t+1} = \mathbf{v}_t \odot \left(\mathbb{1} + 4\eta \left(\frac{1}{n} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}_t - \mathbf{y}) \right) \right)$$

For small η these updates can be written as:

 $\mathbf{w}_{t+1} = \mathbf{w}_t^+ \odot \exp\left(-\eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)\right) - \mathbf{w}_t^- \odot \exp\left(\eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)\right)$

This is the EG± algorithm of Kivinen and Warmuth [1997] and was shown by Ghai et al. [2019] to be unconstrained mirror descent initialized at 0 with the mirror map given by the hyperbolic entropy:

$$\psi_{\gamma}(\mathbf{w}) = \sum_{i=1}^{d} \left(w_i \cdot \operatorname{arcsinh}(w_i/\gamma) - \sqrt{w_i^2 + \gamma^2} \right)$$

 The optimization objective is the constrained squared error of a linear model (not necessarily well-specified)

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

 The optimization objective is the constrained squared error of a linear model (not necessarily well-specified)

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Update rule in continuous time:

$$\frac{d}{dt}\mathbf{w}_t = -\left(\nabla^2 \psi(\mathbf{w}_t)\right)^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t),$$

where $\psi : \mathbb{R}^d \to \mathbb{R}$ is a strictly convex differentiable function whose gradient is surjective, called a *mirror map*.

 The optimization objective is the constrained squared error of a linear model (not necessarily well-specified)

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Update rule in continuous time:

$$\frac{d}{dt}\mathbf{w}_t = -\left(\nabla^2 \psi(\mathbf{w}_t)\right)^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t),$$

where $\psi : \mathbb{R}^d \to \mathbb{R}$ is a strictly convex differentiable function whose gradient is surjective, called a *mirror map*.

• Setting $\psi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$ gives vanilla gradient descent.

 The optimization objective is the constrained squared error of a linear model (not necessarily well-specified)

$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Update rule in continuous time:

$$\frac{d}{dt}\mathbf{w}_t = -\left(\nabla^2 \psi(\mathbf{w}_t)\right)^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t),$$

where $\psi : \mathbb{R}^d \to \mathbb{R}$ is a strictly convex differentiable function whose gradient is surjective, called a *mirror map*.

- Setting $\psi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$ gives vanilla gradient descent.
- Discrete-time updates given by:

$$\nabla \psi(\mathbf{w}_{t+1}) - \nabla \psi(\mathbf{w}_t) = -\eta \nabla_w \mathcal{L}(\mathbf{w}_t)$$

Analysis of Mirror Descent (Optimization)

► A key quantity in the analysis is the Bregman divergence

 $D_{\psi}(\mathbf{w}, \mathbf{w}_0) = \psi(\mathbf{w}) - \psi(\mathbf{w}_0) - \langle \nabla \psi(\mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle.$

Analysis of Mirror Descent (Optimization)

A key quantity in the analysis is the Bregman divergence

 $D_{\psi}(\mathbf{w}, \mathbf{w}_0) = \psi(\mathbf{w}) - \psi(\mathbf{w}_0) - \langle \nabla \psi(\mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle.$

 \blacktriangleright For a reference point \mathbf{w}^{\star} (not necessarily optimal) we have

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

Analysis of Mirror Descent (Optimization)

- A key quantity in the analysis is the Bregman divergence $D_{\psi}(\mathbf{w}, \mathbf{w}_0) = \psi(\mathbf{w}) - \psi(\mathbf{w}_0) - \langle \nabla \psi(\mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle.$
- \blacktriangleright For a reference point \mathbf{w}^{\star} (not necessarily optimal) we have

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

► Thus, we have:

$$\frac{1}{T}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{0}) = \frac{1}{T}\int_{0}^{T} -\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w})dt \geq \frac{1}{T}\int_{0}^{T}\mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})dt$$
Analysis of Mirror Descent (Optimization)

- A key quantity in the analysis is the Bregman divergence $D_{\psi}(\mathbf{w}, \mathbf{w}_0) = \psi(\mathbf{w}) - \psi(\mathbf{w}_0) - \langle \nabla \psi(\mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle.$
- \blacktriangleright For a reference point \mathbf{w}^{\star} (not necessarily optimal) we have

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

Thus, we have:

1

$$\frac{1}{T}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{0}) = \frac{1}{T}\int_{0}^{T} -\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w})dt \geq \frac{1}{T}\int_{0}^{T}\mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})dt$$

This suggests picking the following average as the solution:

$$\bar{\mathbf{w}} = \int_0^T \mathbf{w}_t dt$$

How do we get a handle on the statistical properties of mirror descent?

How do we get a handle on the statistical properties of mirror descent?For optimization, we simply used

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

How do we get a handle on the statistical properties of mirror descent?
For optimization, we simply used

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

▶ Instead, when $\mathcal{L}(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$, we have the following *equality*:

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star}) + \frac{1}{n}\|\mathbf{X}\mathbf{w}_{t} - \mathbf{X}\mathbf{w}^{\star}\|^{2}$$

How do we get a handle on the statistical properties of mirror descent?
For optimization, we simply used

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

▶ Instead, when $\mathcal{L}(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$, we have the following *equality*:

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star}) + \frac{1}{n}\|\mathbf{X}\mathbf{w}_{t} - \mathbf{X}\mathbf{w}^{\star}\|^{2}$$

The same analysis becomes

$$\frac{1}{T}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{0}) = \frac{1}{T}\int_{0}^{T} \left(\mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star}) + \frac{1}{n}\|\mathbf{X}\mathbf{w}_{t} - \mathbf{X}\mathbf{w}^{\star}\|^{2}\right)dt$$

How do we get a handle on the statistical properties of mirror descent?For optimization, we simply used

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \langle -\nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}_{t}), \mathbf{w}^{\star} - \mathbf{w}_{t} \rangle \underbrace{\geq \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star})}_{\text{by convexity}}$$

▶ Instead, when $\mathcal{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$, we have the following *equality*:

$$-\frac{d}{dt}D_{\psi}(\mathbf{w}^{\star},\mathbf{w}_{t}) = \mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star}) + \frac{1}{n}\|\mathbf{X}\mathbf{w}_{t} - \mathbf{X}\mathbf{w}^{\star}\|^{2}$$

The same analysis becomes

$$\frac{1}{T}D_{\psi}(\mathbf{w}^{\star}, \mathbf{w}_{0}) = \frac{1}{T}\int_{0}^{T} \left(\mathcal{L}(\mathbf{w}_{t}) - \mathcal{L}(\mathbf{w}^{\star}) + \frac{1}{n} \|\mathbf{X}\mathbf{w}_{t} - \mathbf{X}\mathbf{w}^{\star}\|^{2}\right) dt$$

Stop at a time T*, such that the offset condition holds:

$$\mathcal{L}(\mathbf{w}_{T^{\star}}) - \mathcal{L}(\mathbf{w}^{\star}) + \frac{1}{n} \|\mathbf{X}\mathbf{w}_{T^{\star}} - \mathbf{X}\mathbf{w}^{\star}\|^{2} \le \varepsilon$$

Offset Rademacher Complexity

Offset Rademacher Complexity

► Slightly informally, an estimator \hat{g} and a class \mathcal{F} satisfy the offset condition with parameters $\varepsilon \geq 0$, c > 0, if

 $\mathcal{L}(\hat{g}) - \mathcal{L}(g_{\mathcal{F}}) + c \|\hat{g} - g_{\mathcal{F}}\|_n^2 \le \varepsilon$

Above, ĝ need not be in 𝔅, g𝔅 ∈ 𝔅 is the minimizer of the true risk, and the last term is the ℓ₂ distance between ĝ and g𝔅 on the (training) sample.

Offset Rademacher Complexity

► Slightly informally, an estimator \hat{g} and a class \mathcal{F} satisfy the offset condition with parameters $\varepsilon \geq 0$, c > 0, if

 $\mathcal{L}(\hat{g}) - \mathcal{L}(g_{\mathcal{F}}) + c \|\hat{g} - g_{\mathcal{F}}\|_n^2 \le \varepsilon$

- Above, ĝ need not be in 𝔅, g𝔅 ∈ 𝔅 is the minimizer of the true risk, and the last term is the ℓ₂ distance between ĝ and g𝔅 on the (training) sample.
- Offset Rademacher Complexity [Liang et al. [2015]]

$$\operatorname{RAD}_{n}(\mathcal{F}, c) = \mathbb{E}_{\sigma_{1}, \dots, \sigma_{n}} \left[\sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \left(2\sigma_{i} f(x_{i}) - c f(x_{i})^{2} \right) \right\} \right]$$

Results I

For a class of functions \mathcal{F} and an estimator \hat{g} , let $\mathcal{E}(\hat{g}, \mathcal{F})$ denote the excess risk of \hat{g} with respect to the class \mathcal{F} .

Theorem (Vaškevičius, Kanade, Rebeschini 2020)

Fix any \mathbf{w}_0 , R > 0, let ψ be a mirror map, and let $\mathfrak{F}(\mathbf{w}_0, R) = \{g_{\mathbf{w}} : D_{\psi}(\mathbf{w}, \mathbf{w}_0) \leq R\}$. For any $\varepsilon > 0$, there exists a data-dependent stopping time $t^* \leq 2R/\varepsilon$ and constants c_1, c_2 that depend on boundedness constants of the data, we have:

 $\mathbb{E}[\mathcal{E}(g_{\mathbf{w}_{t^{\star}}}, \mathfrak{F}(\mathbf{w}_{0}, R))] \leq c_{1}\mathbb{E}[\operatorname{RAD}_{n}(\mathfrak{F}(\alpha_{0}, R) - g_{\mathfrak{F}(\alpha_{0}, R)}, c_{2})] + \varepsilon.$

Results II

Application to in-sample predictions under ℓ_1 -constraints.

Theorem (Vaškevičius, Kanade, Rebeschini 2020)

Suppose that **X** is a fixed-design matrix with columns bounded in ℓ_2 norm and that $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \boldsymbol{\xi}$, where $\boldsymbol{\xi}$ is a vector with i.i.d. zero-mean σ^2 -sub-Gaussian noise. When using mirror descent with hyperbolic entropy as a mirror map,

$$\psi_{\gamma}(\mathbf{w}) = \sum_{i=1}^{d} \left(w_i \cdot \operatorname{arcsinh}(w_i/\gamma) - \sqrt{w_i^2 + \gamma^2} \right),$$

there exists a data-dependent stopping time $t^* \lesssim \sqrt{n}/(\eta \cdot \sigma \sqrt{\log d})$, such that with high probability:

$$\frac{1}{n} \|\mathbf{X}\mathbf{w}^{\star} - \mathbf{X}\mathbf{w}_{t^{\star}}\|_{2}^{2} \lesssim \frac{\|\mathbf{w}^{\star}\|_{1} \cdot \sigma \cdot \sqrt{\log d}}{\sqrt{n}} \cdot \log(1/\gamma).$$

Comparison between ℓ_2 and Hyperbolic Entropy Mirror Maps

Here $\varepsilon_t = \mathcal{L}(\mathbf{w}_t) - \mathcal{L}(\mathbf{w}^*) + \|\mathbf{X}\mathbf{w}_t - \mathbf{X}\mathbf{w}^*\|^2$.

Summary and Research Directions

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Summary and Research Directions

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Mirror Descent

- Implicit Regularization Properties of Early-Stopped Mirror Descent
- Analysis of excess risk using offset Rademacher complexities

Summary and Research Directions

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Mirror Descent

- Implicit Regularization Properties of Early-Stopped Mirror Descent
- Analysis of excess risk using offset Rademacher complexities

Future Research Directions:

- Analysis of fast rates for sparse recovery using mirror descent framework?
- Understanding loss functions beyond squared loss
- Mirror descent to optimize over non-convex "balls"?

Extra Slides

Effects of Initialization Size: Error Size and Stopping Time

Trade-off: Smaller initialization size α yields:

- Smaller error $(\|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S^c}\|_{\infty} \lesssim \sqrt{\alpha})$
- Longer stopping time $(t^* \sim \log 1/\alpha)$

Effects of Initialization Size: Coordinates Path

If initialization size is small enough, Thm yields $\|\mathbf{w}_{t^*} \odot \mathbf{1}_{S^c}\|_{\infty} \lesssim \sqrt{\alpha}$:

- Error outside of true support decreases with α
- \blacktriangleright GD stops before fitting coordinates outside true support S

▶ Lasso suffers from a dimension-dependent bias (log d)

Lasso suffers from a dimension-dependent bias $(\log d)$

• $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I} \Rightarrow \text{Lasso } w_i^{\lambda} = \operatorname{sign}(w_i^{\mathrm{LS}})(|w_i^{\mathrm{LS}}| - \lambda)_+$, with \mathbf{w}^{LS} least squares sol.

Lasso suffers from a dimension-dependent bias $(\log d)$

- $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I} \Rightarrow \text{Lasso } w_i^{\lambda} = \operatorname{sign}(w_i^{\mathrm{LS}})(|w_i^{\mathrm{LS}}| \lambda)_+$, with \mathbf{w}^{LS} least squares sol.
- For sub-Gaussian noise, minimax rates achieved by $\lambda = \Theta(\sqrt{\sigma^2 \log(d)/n})$

Lasso suffers from a dimension-dependent bias $(\log d)$

- $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I} \Rightarrow \text{Lasso } w_i^{\lambda} = \operatorname{sign}(w_i^{\mathrm{LS}})(|w_i^{\mathrm{LS}}| \lambda)_+$, with \mathbf{w}^{LS} least squares sol.
- For sub-Gaussian noise, minimax rates achieved by $\lambda = \Theta(\sqrt{\sigma^2 \log(d)/n})$
- In contrast, in a high signal-to-noise ratio setting, GD has no bias and achieves better rates than minimax:

Lasso suffers from a dimension-dependent bias $(\log d)$

- $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n = \mathbf{I} \Rightarrow \text{Lasso } w_i^{\lambda} = \operatorname{sign}(w_i^{\mathrm{LS}})(|w_i^{\mathrm{LS}}| \lambda)_+$, with \mathbf{w}^{LS} least squares sol.
- For sub-Gaussian noise, minimax rates achieved by $\lambda = \Theta(\sqrt{\sigma^2 \log(d)/n})$
- In contrast, in a high signal-to-noise ratio setting, GD has no bias and achieves better rates than minimax:

► GD only recovers coord.'s on S growing faster than on S^C : $|w_i^{\star}| \gtrsim \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi\right\|_{\infty}$

- ► GD only recovers coord.'s on S growing faster than on $S^C: |w_i^{\star}| \gtrsim \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi\right\|_{\infty}$
 - For other coordinates on S, even if GD does not recover them, the error is proportional to $\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ per coordinate (the minimax rate is $k\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}^{2}$)

- GD only recovers coord.'s on S growing faster than on S^C : $|w_i^{\star}| \gtrsim \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi\right\|_{\infty}$
 - For other coordinates on S, even if GD does not recover them, the error is proportional to $\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ per coordinate (the minimax rate is $k\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}^{2}$)
- ► If $w_{\min}^{\star} \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty} > \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ all coordinates on the true support S grow exponentially at a faster rate than all the coordinates on S^{C}

- GD only recovers coord.'s on S growing faster than on S^C : $|w_i^{\star}| \gtrsim \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi\right\|_{\infty}$
 - For other coordinates on S, even if GD does not recover them, the error is proportional to $\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ per coordinate (the minimax rate is $k\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}^{2}$)
- ► If $w_{\min}^{\star} \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty} > \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ all coordinates on the true support S grow exponentially at a faster rate than all the coordinates on S^{C}
- At $w_{\min}^{\star} = 2 \left\| \frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi \right\|_{\infty}$, phase transitions to dim.-independent error

• GD only recovers coord.'s on S growing faster than on S^C : $|w_i^{\star}| \gtrsim \left\|\frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi\right\|_{\infty}$

• For other coordinates on S, even if GD does not recover them, the error is proportional to $\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ per coordinate (the minimax rate is $k\left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}^{2}$)

► If $w_{\min}^{\star} - \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty} > \left\|\frac{1}{n}\mathbf{X}^{\mathsf{T}}\xi\right\|_{\infty}$ all coordinates on the true support S grow exponentially at a faster rate than all the coordinates on S^{C}

• At $w_{\min}^{\star} = 2 \left\| \frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi \right\|_{\infty}$, phase transitions to dim.-independent error

Figure: Let $\mathbf{w}^{\star} = \gamma \mathbf{1}_{S}$. Red lines are solutions to $\gamma = 2 \cdot \frac{\sigma \sqrt{2 \log(2d)}}{\sqrt{n}}$ for sub-Gauss. noise

Zhao et al. [2019] studies a closely related Hadamard product reparameterization $\mathbf{w}_t = \mathbf{u}_t \odot \mathbf{v}_t$ and uses GD to implicitly induce sparsity

(our parametrization: $\mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t - \mathbf{v}_t \odot \mathbf{v}_t$)

Parametrization is very similar, but algorithms, analysis and results are not!

Similarities: RIP condition, minimax rates, instance adaptivity

Similarities: RIP condition, minimax rates, instance adaptivity

Similarities: RIP condition, minimax rates, instance adaptivity

Differences:

> They have worse conditions on step size, depending on unknown quantities

Similarities: RIP condition, minimax rates, instance adaptivity

- > They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim rac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log rac{d}{lpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$

Similarities: RIP condition, minimax rates, instance adaptivity

- > They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim \frac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log \frac{d}{\alpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$
 - Our theory show how w^{\star}_{\max} can be computed from the data, while in their case η is additional hyperparameter to be tuned

Similarities: RIP condition, minimax rates, instance adaptivity

- They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim \frac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log \frac{d}{\alpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$
 - Our theory show how w^\star_{\max} can be computed from the data, while in their case η is additional hyperparameter to be tuned
- Their theory does not properly handle noisy settings and cannot recover smallest possible signals

Similarities: RIP condition, minimax rates, instance adaptivity

Differences:

- > They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim \frac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log \frac{d}{\alpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$
 - Our theory show how w^\star_{\max} can be computed from the data, while in their case η is additional hyperparameter to be tuned

Their theory does not properly handle noisy settings and cannot recover smallest possible signals

• Let
$$\kappa \coloneqq \frac{w_{\max}^*}{w_{\min}^*}$$
 They require RIP $\delta \lesssim \frac{1}{\kappa \sqrt{k} \log(d/\alpha)}$, while we have $\delta \lesssim \frac{1}{\sqrt{k \log \kappa}}$
Concurrent work: Zhao et al. [2019]

Similarities: RIP condition, minimax rates, instance adaptivity

Differences:

- They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim rac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log rac{d}{lpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$
 - Our theory show how w^\star_{\max} can be computed from the data, while in their case η is additional hyperparameter to be tuned
- Their theory does not properly handle noisy settings and cannot recover smallest possible signals
 - Let $\kappa := \frac{w_{\max}^*}{w_{\min}^*}$ They require RIP $\delta \lesssim \frac{1}{\kappa \sqrt{k} \log(d/\alpha)}$, while we have $\delta \lesssim \frac{1}{\sqrt{k} \log \kappa}$
 - If $w_{\min}^* \simeq \sigma \sqrt{\log d} / \sqrt{n}$, they have $\delta = O(1/(\sqrt{k}\sqrt{n}))$, which is in general impossible to satisfy with random design matrices (e.g. X i.i.d. Gaussian)

Concurrent work: Zhao et al. [2019]

Similarities: RIP condition, minimax rates, instance adaptivity

Differences:

- They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim rac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log rac{d}{lpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$
 - Our theory show how w^{\star}_{\max} can be computed from the data, while in their case η is additional hyperparameter to be tuned
- Their theory does not properly handle noisy settings and cannot recover smallest possible signals
 - Let $\kappa \coloneqq \frac{w_{\max}^*}{w_{\min}^*}$ They require RIP $\delta \lesssim \frac{1}{\kappa \sqrt{k} \log(d/\alpha)}$, while we have $\delta \lesssim \frac{1}{\sqrt{k} \log \kappa}$
 - If $w_{\min}^* \simeq \sigma \sqrt{\log d} / \sqrt{n}$, they have $\delta = O(1/(\sqrt{k}\sqrt{n}))$, which is in general impossible to satisfy with random design matrices (e.g. X i.i.d. Gaussian)

▶ They only consider constant step size ⇒ do not achieve comput. optimality

Concurrent work: Zhao et al. [2019]

Similarities: RIP condition, minimax rates, instance adaptivity

Differences:

- They have worse conditions on step size, depending on unknown quantities
 - They require $\eta \lesssim \frac{w_{\min}^{\star}}{w_{\max}^{\star}} (\log \frac{d}{\alpha})^{-1}$ while we require $\eta \lesssim 1/w_{\max}^{\star}$
 - Our theory show how w^{\star}_{\max} can be computed from the data, while in their case η is additional hyperparameter to be tuned
- Their theory does not properly handle noisy settings and cannot recover smallest possible signals
 - Let $\kappa \coloneqq \frac{w_{\max}^*}{w_{\min}^*}$ They require RIP $\delta \lesssim \frac{1}{\kappa \sqrt{k} \log(d/\alpha)}$, while we have $\delta \lesssim \frac{1}{\sqrt{k} \log \kappa}$
 - If $w_{\min}^* \simeq \sigma \sqrt{\log d} / \sqrt{n}$, they have $\delta = O(1/(\sqrt{k}\sqrt{n}))$, which is in general impossible to satisfy with random design matrices (e.g. X i.i.d. Gaussian)
- They only consider constant step size \Rightarrow **do not achieve comput. optimality**
 - Due to different constraints on step sizes, even in the case of constant step size our algorithm is can be faster by a factor \sqrt{n}

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Further improvements: (we have empirical evidence)

- Optimal sample rates
- Restricted Eigenvalue (RE) condition, to allow for correlated design

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Further improvements: (we have empirical evidence)

- Optimal sample rates
- Restricted Eigenvalue (RE) condition, to allow for correlated design

General Research Directions:

- Establish general math. framework for implicit reg. and sparse recovery (cf. bias-variance for ridge regression, *basic inequality* for M estimators, connection to localized complexity measures)
- Establish a complete theory of early-stopping for sparse estimation (see above) prediction, var. selection, oracle ineq., with focus on comput. efficiency

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Further improvements: (we have empirical evidence)

- Optimal sample rates
- Restricted Eigenvalue (RE) condition, to allow for correlated design

General Research Directions:

- Establish general math. framework for implicit reg. and sparse recovery (cf. bias-variance for ridge regression, *basic inequality* for M estimators, connection to localized complexity measures)
- Establish a complete theory of early-stopping for sparse estimation (see above) prediction, var. selection, oracle ineq., with focus on comput. efficiency
 - Explicit link with known penalty terms related to sparse recovery?

Main contribution:

Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:

- Optimal statistical rates (minimax)
- Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
- Optimal computational cost (modulo log terms, same cost of reading data)

Further improvements: (we have empirical evidence)

- Optimal sample rates
- Restricted Eigenvalue (RE) condition, to allow for correlated design

General Research Directions:

- Establish general math. framework for implicit reg. and sparse recovery (cf. bias-variance for ridge regression, *basic inequality* for M estimators, connection to localized complexity measures)
- Establish a complete theory of early-stopping for sparse estimation (see above) prediction, var. selection, oracle ineq., with focus on comput. efficiency
 - Explicit link with known penalty terms related to sparse recovery?
 - Can we apply some of the techniques for ridge regression (cf. slide 4)?

• Recall that we require the RIP constant δ to satisfy $\delta = \widetilde{O}(1/\sqrt{k})$

- Recall that we require the RIP constant δ to satisfy $\delta = \widetilde{O}(1/\sqrt{k})$
- Satisfying such an assumption requires $n \gtrsim k^2 \log(ed/k)$

- Recall that we require the RIP constant δ to satisfy $\delta = \widetilde{O}(1/\sqrt{k})$
- Satisfying such an assumption requires $n \gtrsim k^2 \log(ed/k)$
 - By random-matrix theory, $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \mathbf{I}\| \lesssim \sqrt{k/n} + k/n$, $\|\cdot\|$ operator norm

- Recall that we require the RIP constant δ to satisfy $\delta = \widetilde{O}(1/\sqrt{k})$
- Satisfying such an assumption requires $n \gtrsim k^2 \log(ed/k)$
 - By random-matrix theory, $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \mathbf{I}\| \lesssim \sqrt{k/n} + k/n$, $\|\cdot\|$ operator norm
 - Hence, we need $n\gtrsim k^2$ to satisfy $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n-\mathbf{I}\|\lesssim 1/\sqrt{k}$

- Recall that we require the RIP constant δ to satisfy $\delta = \widetilde{O}(1/\sqrt{k})$
- Satisfying such an assumption requires $n \gtrsim k^2 \log(ed/k)$
 - By random-matrix theory, $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \mathbf{I}\| \lesssim \sqrt{k/n} + k/n$, $\|\cdot\|$ operator norm
 - Hence, we need $n\gtrsim k^2$ to satisfy $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n-\mathbf{I}\|\lesssim 1/\sqrt{k}$

Sub-optimal sample complexity due to our analysis, not to algorithm:

- Recall that we require the RIP constant δ to satisfy $\delta = \widetilde{O}(1/\sqrt{k})$
- Satisfying such an assumption requires $n \gtrsim k^2 \log(ed/k)$
 - By random-matrix theory, $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \mathbf{I}\| \lesssim \sqrt{k/n} + k/n$, $\|\cdot\|$ operator norm
 - Hence, we need $n \geq k^2$ to satisfy $\|\mathbf{X}^{\mathsf{T}}\mathbf{X}/n \mathbf{I}\| \leq 1/\sqrt{k}$

Sub-optimal sample complexity due to our analysis, not to algorithm:

GD to match and eventually exceed ℓ_2 -error performance of the Lasso

(a) Sample complexity linear in k is enough for (b) Sample complexity linear in k is enough for GD to achieve the ℓ_{∞} -error in our main theorem: $\|\mathbf{w}_{t^{\star}} \odot \mathbf{1}_{S^c}\|_{\infty} \lesssim \sqrt{\alpha} < \frac{\varepsilon}{d}$

Lasso attains minimax rates under a **Restricted Eigenvalue condition**:

- Lasso attains minimax rates under a Restricted Eigenvalue condition:
 - **RE**(γ): $\|\mathbf{X}\mathbf{w}\|_2^2/n \ge \gamma \|\mathbf{w}\|_2^2$ for vectors \mathbf{w} satisfying the cone condition $\|\mathbf{w}_{S^c}\|_1 \le c \|\mathbf{w}_S\|_1$ for a suitable choice of constant $c \ge 1$

- Lasso attains minimax rates under a Restricted Eigenvalue condition:
 - **RE**(γ): $\|\mathbf{X}\mathbf{w}\|_2^2/n \ge \gamma \|\mathbf{w}\|_2^2$ for vectors \mathbf{w} satisfying the cone condition $\|\mathbf{w}_{S^c}\|_1 \le c \|\mathbf{w}_S\|_1$ for a suitable choice of constant $c \ge 1$
 - Only imposes constraints on *lower* eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n$

- Lasso attains minimax rates under a Restricted Eigenvalue condition:
 - **RE**(γ): $\|\mathbf{X}\mathbf{w}\|_2^2/n \ge \gamma \|\mathbf{w}\|_2^2$ for vectors \mathbf{w} satisfying the cone condition $\|\mathbf{w}_{S^c}\|_1 \le c \|\mathbf{w}_S\|_1$ for a suitable choice of constant $c \ge 1$
 - Only imposes constraints on *lower* eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n$
 - The RE can be satisfied by random *correlated* designs

- Lasso attains minimax rates under a Restricted Eigenvalue condition:
 - **RE**(γ): $\|\mathbf{X}\mathbf{w}\|_2^2/n \ge \gamma \|\mathbf{w}\|_2^2$ for vectors \mathbf{w} satisfying the cone condition $\|\mathbf{w}_{S^c}\|_1 \le c \|\mathbf{w}_S\|_1$ for a suitable choice of constant $c \ge 1$
 - Only imposes constraints on *lower* eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n$
 - The RE can be satisfied by random *correlated* designs
- RE is necessary for fast rates for any poly. time algorithm [Zhang et al., 2014]

Lasso attains minimax rates under a Restricted Eigenvalue condition:

- **RE**(γ): $\|\mathbf{X}\mathbf{w}\|_2^2/n \ge \gamma \|\mathbf{w}\|_2^2$ for vectors \mathbf{w} satisfying the cone condition $\|\mathbf{w}_{S^c}\|_1 \le c \|\mathbf{w}_S\|_1$ for a suitable choice of constant $c \ge 1$
- Only imposes constraints on *lower* eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n$
- The RE can be satisfied by random correlated designs

▶ RE is necessary for fast rates for any poly. time algorithm [Zhang et al., 2014]

Figure: i.i.d. Gaussian ensembles, covariance matrices $(1 - \mu)\mathbf{I} + \mu\mathbf{1}\mathbf{1}^{\mathsf{T}}$ for $\mu = 0$ and 0.5. For $\mu = 0.5$ the RIP fails but RE condition holds w.h.p. Our method achieves the fast rates and eventually outperforms the lasso even when we violate the RIP assumption

References I

- A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence rates of gradient methods for high-dimensional statistical recovery. In *Advances in Neural Information Processing Systems*, pages 37–45, 2010.
- A. Ali, J. Z. Kolter, and R. J. Tibshirani. A continuous-time view of early stopping for least squares regression. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1370–1378, 2019.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. *Foundations and Trends® in Machine Learning*, 4(1):1–106, 2012.
- F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory. *Journal of complexity*, 23(1):52–72, 2007.
- P. Bühlmann and B. Yu. Boosting with the l2 loss: regression and classification. *Journal* of the American Statistical Association, 98(462):324–339, 2003.
- A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, 2007.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. *The Annals of statistics*, 32(2):407–499, 2004.
- J. Friedman and B. E. Popescu. Gradient directed regularization. Technical report, 2004.

References II

- U. Ghai, E. Hazan, and Y. Singer. Exponentiated gradient meets gradient descent. arXiv preprint arXiv:1902.01903, 2019.
- A. Goldenshluger and A. Tsybakov. Adaptive prediction and estimation in linear regression with infinitely many parameters. *The Annals of Statistics*, 29(6):1601–1619, 2001.
- S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit regularization in matrix factorization. In Advances in Neural Information Processing Systems, pages 6151–6159, 2017.
- S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit bias in terms of optimization geometry. In *International Conference on Machine Learning*, pages 1827–1836, 2018.
- T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical learning: data mining, inference and prediction. *The Mathematical Intelligencer*, 27 (2):83–85, 2001.
- P. D. Hoff. Lasso, fractional norm and structured sparse estimation using a hadamard product parametrization. *Computational Statistics & Data Analysis*, 115:186–198, 2017.

References III

- J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. *information and computation*, 132(1):1–63, 1997.
- Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations. In *Conference On Learning Theory*, pages 2–47, 2018.
- T. Liang, A. Rakhlin, and K. Sridharan. Learning with square loss: Localization through offset rademacher complexity. In *Conference on Learning Theory*, pages 1260–1285, 2015.
- G. Raskutti, M. J. Wainwright, and B. Yu. Early stopping and non-parametric regression: an optimal data-dependent stopping rule. *The Journal of Machine Learning Research*, 15(1):335–366, 2014.
- S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier. *Journal of Machine Learning Research*, 5(Aug):941–973, 2004.
- A. Suggala, A. Prasad, and P. K. Ravikumar. Connecting optimization and regularization paths. In Advances in Neural Information Processing Systems, pages 10608–10619, 2018.
- M. J. Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.

References IV

- Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive Approximation, 26(2):289–315, 2007.
- T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. *The Annals of Statistics*, 33(4):1538–1579, 2005.
- Y. Zhang, M. J. Wainwright, and M. I. Jordan. Lower bounds on the performance of polynomial-time algorithms for sparse linear regression. In *Conference on Learning Theory*, pages 921–948, 2014.
- P. Zhao, Y. Yang, and Q.-C. He. Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression. *arXiv preprint arXiv:1903.09367*, 2019.