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Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]

I Unknown data distribution leads to minimize ERM = 1
n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

H

h?

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

H

h?

Pen(h) ≤ Rλ

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

H

h?

Pen(h) ≤ Rλ

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

H

h?

Pen(h) ≤ Rλ

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters

H

h?



Types of Regularization
I Goal of machine learning: compute h? ∈ argminh∈HE[`(h, Z)]
I Unknown data distribution leads to minimize ERM = 1

n

∑n
i=1 `(h, Zi)

I Finite amount of data (n <∞) leads to necessity of regularization:

1

Explicit

– Consider ERM + λPen(h)
– Statistics: Choose penalty λ, Pen(h)
– Optimization: (try to) solve it

H

h?

Pen(h) ≤ Rλ

Implicit

– Consider unpenalized ERM
– Statistics + Optimization: Choose:

Parametrization
Solver
(Hyper)Parameters

H

h?

ĥ0
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Implicit Regularization for Ridge Regression

2

Explicit

min
w∈Rd

1
n
‖Xw− y‖2

2 + λ ‖w‖2
2

For example:
– Statistics:
λ? ∼ 1√

n
⇒ error . 1√

n

(minimax optimal rates)
[Goldenshluger and Tsybakov,
2001, Caponnetto and De Vito,
2007], ...

– Optimization: strongly convex
but λ? ∼ 1√

n
⇒ high iteration

complexity for GD ⇒ Newton?

Implicit

Statistics + Optimization:

Parametrization

L(w) = 1
n
‖Xw− y‖2

2

Solver

w0 = 0
wt+1 = wt − η∇L(wt)

Parameters most results establish
connection at optimality:

ηt? ∼ 1
λ?

[Bühlmann and Yu, 2003, Yao
et al., 2007, Bauer et al., 2007,
Raskutti et al., 2014],...
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Implicit Regularization for Ridge Regression
But even stronger results for the optimization path:
(connections already established in prior literature)
I Empirically: [Friedman and Popescu, 2004]
I Theory: for Gradient Flow (η → 0), with no assumptions on X, we have:

[Suggala et al., 2018, Ali et al., 2019]

t ∼ 1
λ

for all t and λ

Figure: Risk versus t or 1
λ
. Figure taken from [Ali et al., 2019]

3



Implicit Regularization for Ridge Regression

This has motivated a lot of research on computationally efficient methods:
I Acceleration
I Stochastic methods
I Mini-batching
I Averaging
I Sketching
I Sub-sampling
I Preconditioning
I Parallel and distributed architectures
I . . .

Success story for Ridge Regression. What about sparse recovery?

4

Strong Connection between GD and Ridge Regression



Implicit Regularization for Sparse Recovery?

5

Explicit

min
w∈Rd

1
n
‖Xw− y‖2

2 + λ ‖w‖1

Related to our setting:
– Statistics: λ? ∼ σ

√
log d/

√
n

⇒ error . σ
√
k log d/

√
n

(minimax optimal rates)
[Wainwright, 2019]—book

– Opt: prox. methods (ISTA, etc.)
[Bach et al., 2012]—monograph
Õ(1) iteration complexity
[Agarwal et al., 2010],...
⇒ Õ(nd) comp. complexity
(computational optimality)

Implicit

Literature connected to `1-norm:
I Coordinate-Descent / AdaBoost:

[Hastie et al., 2001, Efron et al., 2004,
Rosset et al., 2004, Zhang and Yu, 2005],...

I Steepest Descent: [Gunasekar et al., 2018]
I Gradient Flow: Low-rank matrix

recovery with param. W = UUT

[Gunasekar et al., 2017, Li et al., 2018] RIP
⇓

conjecture: for w? < 0 and wt = ut � ut
GD on ut yields min. `1-norm solution

I Gradient Descent: Zhao et al. [2019]
(concurrent work, more on this later)

Most literature on implicit reg.
for sparse recovery deals with:
I Limit statements:

At convergence: t→∞
Inifinitesimal step size: η → 0
Infinitesimal initial. size: α→ 0

I No noise (or limited noise)
I No computational efficiency

Q. Can build a theory of early stopping for optimal noisy sparse recovery?
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Parametrization

L(u,v)= 1
n
‖X(u� u−v� v)−y‖2

2

Solver GD on u and v:

u0 = v0 = α1

ut+1 = ut − η
∂L(ut,vt)

∂ut

vt+1 = vt − η
∂L(ut,vt)

∂vt
wt+1 = ut+1 � ut+1−vt+1 � vt+1

Parameters for minimax results:

ηt?

log 1
α

∼ 1
λ?

but optimization path is different..

Intuition:
I Let wt = ut � ut
I GD is tied to `2 geometry
I GD on u should be tied to `1 for w:

‖ut‖2
2 = ‖wt‖1
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Implicit Regularization for Sparse Recovery
I For minimax rates, we can prove:

ηt?

log 1
α

∼ 1
λ?

I But opt. paths and properties of estimators (GD vs. Lasso) are different

7



On Parametrization and Multiplicative Updates
I Parametrization previously used in:

Hoff [2017]: to turn (convex) non-smooth program into (non-convex) smooth
Gunasekar et al. [2017]: to address matrix sensing

I Parameterization turns additive updates into multiplicative updates:

ut+1 = ut �
(

1− 4η
(

1
n

XTX (wt −w?)− 1
n

XTξ

))
vt+1 = vt �

(
1 + 4η

(
1
n

XTX (wt −w?)− 1
n

XTξ

))

I Compare to updates on canonical parametrization L(w) (for Ridge):

wt+1 = wt − η∇L(wt) = wt −
2η
n

(
XTX(wt −w?)−XTξ

)

8
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Comparison with Lasso

Similar to Lasso: Sparse iterates/solutions, minimax rates

Different than Lasso:
I Coordinates fitted one-by-one
I Instance adaptivity for high signal-to-noise (beyond minimax; no log d bias)
I Comput. optimality via early stopping (model selection via GD iterates)
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Noiseless Setting
Empirical evidence that:
I Monotonicity: Training time controls complexity of solution (`1-norm)
I At convergence GD yields min. `1-norm solution

(consistent with conjecture of Gradient Flow in [Gunasekar et al., 2017])

10



Noisy Setting
Noisy setting is fundamentally different: early stopping is needed

Training Error: 1
n‖Xwt − y‖

2
2

11



Problem Setting

+ =

X ∈ Rn×d w? ∈ Rd ξ ∈ Rn y ∈ Rn
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‖ŵ− w?‖2

2 is small.

12



Problem Setting

+ =

X ∈ Rn×d w? ∈ Rd ξ ∈ Rn y ∈ Rn

Objective

Given n� d linear measurements
y = Xw? + ξ find ŵ such that
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‖ŵ− w?‖2

2 is small.

12

1. Assume ‖w?‖0 = k



Problem Setting

+ =

X ∈ Rn×d w? ∈ Rd ξ ∈ Rn y ∈ Rn

Objective Assumptions

1. w? is sparse;
2. X satisfies RIP.

Given n� d linear measurements
y = Xw? + ξ find ŵ such that
‖ŵ− w?‖2

2 is small.

12

1. Assume ‖w?‖0 = k

2. Assume X/
√
n satisfy RIP with δ= Õ(1/

√
k), namely,

(1−δ) ‖w‖2
2 ≤

∥∥Xw/
√
n
∥∥2

2 ≤ (1+δ) ‖w‖2
2 for any (k+1)-sparse w ∈ Rd



Main Theorem
I Define w?max = maxi |w?i | and w?min = mini:w?

i
6=0 |w?i |

I Pick any ε ∈ (0, 1)
I Set initialization size 0 < α < ε2

(2d+1)2∨(w?
max)2 (poly. in param.)

I Set the learning rate η ≤ 1
20w?

max
(to prevent explosion)

Lemma: w?max can be estimated up to factor 2 with cost nd

Theorem (Vaskevicius, Kanade, Rebeschini 2019)

After

t? = O

(
w?max

w?min ∨
∥∥ 1
nXTξ

∥∥
∞ ∨ ε

· 1
ηw?max

· log 1
α

)
iterations,

the GD iterate wt? satisfies

‖wt? � 1Sc‖∞ .
√
α <

ε

d

‖wt? � 1S −w?‖∞ .

{∥∥ 1
nXTξ

∥∥
∞ ∨ ε always holds

∥∥ 1
nXTξ � 1S

∥∥
∞ ∨ ε if w?min &

∥∥ 1
nXTξ

∥∥
∞
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Statistical Rates

Corollary (Noiseless Recovery)

Let ξ = 0. Then GD yields ‖wt? −w?‖2
2 . kε2

Corollary (Minimax Rates in the Noisy Setting)
Let ξ have i.i.d. σ2-sub-Gaussian entries. Let ε = 4

√
σ2 log(2d)

n . Then,

t? = O

(
w?max

√
n

σ
√

log d
· log 1

α

)
= Õ

(
w?max

√
n

σ

)

and, with probability at least 1− 1/(8d3), GD yields

‖wt? −w?‖2
2 .

kσ2 log d
n

I ε controls the size of the smallest coordinates of w? that GD can recover
I To achieve minimax rates, GD has to recover everything as big as

∥∥ 1
nXTξ

∥∥
∞
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Proof Idea
I Let wt = ut � ut

I By RIP XTX/n ≈ I for sparse vectors. Assume XTX/n = I
I Each coordinate evolves independently of the others as:

wt+1 = wt � (1 − 4η(wt −w? + XTξ/n))2

I Hence we only need to understand one-dimensional sequences

xt+1 = xt(1− 4η(xt − x?))2 with x0 = α2

I Prop. Let 0 < α2 ≤ x?

2 , η . 1/x?. Given ε > 0 and t & 1
ηx? log (x?)2

α2ε :

x? − ε ≤ xt ≤ x?

I The i-th coord. converges in O( 1
η|w?

i +(XTξ)i/n| log |w
?
i +(XTξ)i/n|2

α2ε ) iterations

I Hence, all coordinates converge exponentially fast at different rates
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Proof Idea
I Sequence fitting signal: xt+1 = xt(1− 4η(xt − x?))2

I Sequence fitting noise: yt+1 = yt(1− 4η(yt − y?))2 with y? =
∥∥ 1
nXTξ

∥∥
∞

I Goal: fit the sequence (xt)t≥0 to x? within ε error before (yt)t≥0 exceeds α

I If x? & y?, then for any ε > 0 there is α small enough so that T xx?−ε ≤ T yα :

(a) α too large (b) α small enough: signal fitted before
noise goes above α

BY SAME IDEA: GD fits coordinates one by one!
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Constant Step Size yields O(
√

n) Iteration Complexity
Our theorem prescribes

t? = O

(
w?max
√
n

σ
√

log d
· log 1

α

)
= Õ

(
w?max

√
n

σ

)
which yields a total cost Õ(n3/2d), not optimal: cost of reading data is O(nd)

Figure: n = 100k2, for k = 1, 1.5, 2, 2.5, 3, 3.5, 4

Q: Can speed up convergence and get computational optimality (mod log terms)?

17



Small Step Size Hurts Fitting Small Coordinates
Different coordinates are fitted at different rates: the smaller the later are fitted.

Figure: w? = (64, 32, 16, 8, 4, 2, 1, 0, . . . , 0). Algorithm with constant step size spends
approximately twice the time to fit each coordinate that the previous one

IDEA: Use different learning rates for different coordinates
I If RIP exact and no noise, then ηi ∼ 1

w?
i
would yield convergence in O(log w?

i

α )

I We need refined estimates of w?i for each coordinate i
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Increasing Step Sizes Scheme yields Comp. Optimality

I Estimate w?max up to factor 2 in time O(nd) (Lemma)
I For i = 1, . . . , d set ηi � 1/w?max and C = 1/8
I Repeat:

1. Run gradient descent for Ω(logα−1) iterations
2. By this time for all i such that |w?i | > w?max/2 we have |wt,i| > Cw?max
3. For all i such that |wt,i| ≤ Cw?max double the step size ηi
4. Divide C by 2 and go back to step 1

Theorem
Using the increasing step sizes scheme, all previous results hold with

t? = O

(
log

(
w?max

√
n

σ
√

log d

)
log 1

α

)

Iteration complexity Õ(1) ⇒ total computational complexity Õ(nd)

19

Increasing Step Sizes + Early Stopping ⇒ Computational Optimality
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19

Increasing Step Sizes + Early Stopping ⇒ Computational Optimality



Increasing Step Sizes Scheme yields Comp. Optimality

I Estimate w?max up to factor 2 in time O(nd) (Lemma)
I For i = 1, . . . , d set ηi � 1/w?max and C = 1/8
I Repeat:

1. Run gradient descent for Ω(logα−1) iterations
2. By this time for all i such that |w?i | > w?max/2 we have |wt,i| > Cw?max
3. For all i such that |wt,i| ≤ Cw?max double the step size ηi
4. Divide C by 2 and go back to step 1

Theorem
Using the increasing step sizes scheme, all previous results hold with

t? = O

(
log

(
w?max

√
n

σ
√

log d

)
log 1

α

)
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Computational Optimality

Figure: w? = (64, 32, 16, 8, 4, 2, 1, 0, . . . , 0). Algorithm with increasing step sizes fits
each coordinate at approximately the same number of iterations

20



Computational Optimality
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Is there a more general picture?

I Gradient updates using Hadamard parametrization:

ut+1 = ut �

1− 4η

 1
n

XT(Xwt − y)︸ ︷︷ ︸
=∇wL(w)




vt+1 = vt �
(

1 + 4η
(

1
n

XT(Xwt − y)
))

I For small η these updates can be written as:

wt+1 = w+
t � exp (−η∇wL(wt))−w−t � exp (η∇wL(wt))

I This is the EG± algorithm of Kivinen and Warmuth [1997] and was shown
by Ghai et al. [2019] to be unconstrained mirror descent initialized at 0 with
the mirror map given by the hyperbolic entropy:

ψγ(w) =
d∑
i=1

(
wi · arcsinh(wi/γ)−

√
w2
i + γ2

)
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Unconstrained Mirror Descent with Squared Error
I The optimization objective is the constrained squared error of a linear model

(not necessarily well-specified)

L(w) = 1
n
‖Xw− y‖2

I Update rule in continuous time:

d

dt
wt = −

(
∇2ψ(wt)

)−1∇wL(wt),

where ψ : Rd → R is a strictly convex differentiable function whose gradient
is surjective, called a mirror map.

I Setting ψ(w) = 1
2‖w‖

2 gives vanilla gradient descent.
I Discrete-time updates given by:

∇ψ(wt+1)−∇ψ(wt) = −η∇wL(wt)

23
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Analysis of Mirror Descent (Optimization)
I A key quantity in the analysis is the Bregman divergence

Dψ(w,w0) = ψ(w)− ψ(w0)− 〈∇ψ(w0),w−w0〉.

I For a reference point w? (not necessarily optimal) we have

− d

dt
Dψ(w?,wt) = 〈−∇wL(wt),w? −wt〉≥ L(wt)− L(w?)︸ ︷︷ ︸

by convexity

I Thus, we have:

1
T
Dψ(w?,w0) = 1

T

∫ T

0
− d

dt
Dψ(w?,w)dt ≥ 1

T

∫ T

0
L(wt)− L(w?)dt

I This suggests picking the following average as the solution:

w̄ =
∫ T

0
wtdt
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Analysis of Mirror Descent (Statistics)
I How do we get a handle on the statistical properties of mirror descent?

I For optimization, we simply used

− d

dt
Dψ(w?,wt) = 〈−∇wL(wt),w? −wt〉≥ L(wt)− L(w?)︸ ︷︷ ︸

by convexity

I Instead, when L(w) = 1
n‖Xw− y‖2, we have the following equality:

− d

dt
Dψ(w?,wt) = L(wt)− L(w?) + 1

n
‖Xwt −Xw?‖2

I The same analysis becomes

1
T
Dψ(w?,w0) = 1

T

∫ T

0

(
L(wt)− L(w?) + 1

n
‖Xwt −Xw?‖2

)
dt

I Stop at a time T ?, such that the offset condition holds:

L(wT?)− L(w?) + 1
n
‖XwT? −Xw?‖2 ≤ ε
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Offset Rademacher Complexity

I Slightly informally, an estimator ĝ and a class F satisfy the offset condition
with parameters ε ≥ 0, c > 0, if

L(ĝ)− L(gF) + c‖ĝ − gF‖2
n ≤ ε

I Above, ĝ need not be in F, gF ∈ F is the minimizer of the true risk, and the
last term is the `2 distance between ĝ and gF on the (training) sample.

I Offset Rademacher Complexity [Liang et al. [2015]]

RADn(F, c) = Eσ1,...,σn

[
sup
f∈F

{
1
n

(
2σif(xi)− cf(xi)2)}]
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Results I
For a class of functions F and an estimator ĝ, let E(ĝ,F) denote the excess risk of
ĝ with respect to the class F.

Theorem (Vaškevičius, Kanade, Rebeschini 2020)
Fix any w0, R > 0, let ψ be a mirror map, and let
F(w0, R) = {gw : Dψ(w,w0) ≤ R}. For any ε > 0, there exists a
data-dependent stopping time t? ≤ 2R/ε and constants c1, c2 that depend on
boundedness constants of the data, we have:

E[E(gwt? ,F(w0, R))] ≤ c1E[RADn(F(α0, R)− gF(α0,R), c2)] + ε.
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Results II
Application to in-sample predictions under `1-constraints.

Theorem (Vaškevičius, Kanade, Rebeschini 2020)
Suppose that X is a fixed-design matrix with columns bounded in `2 norm and
that y = Xw? + ξ, where ξ is a vector with i.i.d. zero-mean σ2-sub-Gaussian
noise. When using mirror descent with hyperbolic entropy as a mirror map,

ψγ(w) =
d∑
i=1

(
wi · arcsinh(wi/γ)−

√
w2
i + γ2

)
,

there exists a data-dependent stopping time t? .
√
n/(η · σ

√
log d), such that

with high probability:

1
n
‖Xw? −Xwt?‖2

2 .
‖w?‖1 · σ ·

√
log d√

n
· log(1/γ).
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Comparison between `2 and Hyperbolic Entropy Mirror
Maps
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Here εt = L(wt)− L(w?) + ‖Xwt −Xw?‖2.
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Summary and Research Directions
Main contribution:
Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:
I Optimal statistical rates (minimax)
I Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
I Optimal computational cost (modulo log terms, same cost of reading data)

Mirror Descent
I Implicit Regularization Properties of Early-Stopped Mirror Descent
I Analysis of excess risk using offset Rademacher complexities

Future Research Directions:
I Analysis of fast rates for sparse recovery using mirror descent framework?
I Understanding loss functions beyond squared loss
I Mirror descent to optimize over non-convex “balls”?
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Extra Slides
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Effects of Initialization Size: Error Size and Stopping Time

Trade-off: Smaller initialization size α yields:
I Smaller error (‖wt? � 1Sc‖∞ .

√
α)

I Longer stopping time (t? ∼ log 1/α)
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Effects of Initialization Size: Coordinates Path

If initialization size is small enough, Thm yields ‖wt? � 1Sc‖∞ .
√
α:

I Error outside of true support decreases with α
I GD stops before fitting coordinates outside true support S

(a) Initialization not small enough (b) Initialization small enough
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Instance Adaptivity: Dim-Free Rates (beyond minimax)
I Lasso suffers from a dimension-dependent bias (log d)

XTX/n = I ⇒ Lasso wλi = sign(wLS
i )(|wLS

i | − λ)+, with wLS least squares sol.
For sub-Gaussian noise, minimax rates achieved by λ = Θ(

√
σ2log(d)/n)

I In contrast, in a high signal-to-noise ratio setting, GD has no bias and
achieves better rates than minimax:

Corollary

If w?min &
∥∥ 1
nXTξ

∥∥
∞, sub-Gaussian noise, then ‖wt? −w?‖2

2 . k
σ2log k

n
w.h.p.
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Instance Adaptivity: Statistical Phase Transitions

I GD only recovers coord.’s on S growing faster than on SC : |w?i |&
∥∥ 1
nXTξ

∥∥
∞

For other coordinates on S, even if GD does not recover them, the error is
proportional to

∥∥ 1
n

XTξ
∥∥
∞

per coordinate (the minimax rate is k
∥∥ 1
n

XTξ
∥∥2
∞
)

I If w?min −
∥∥ 1
nXTξ

∥∥
∞ >

∥∥ 1
nXTξ

∥∥
∞ all coordinates on the true support S

grow exponentially at a faster rate than all the coordinates on SC

I At w?min = 2
∥∥ 1
nXTξ

∥∥
∞, phase transitions to dim.-independent error

Figure: Let w? = γ1S . Red lines are solutions to γ = 2 · σ
√

2 log(2d)
√
n

for sub-Gauss. noise
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Concurrent work: Zhao et al. [2019]
Zhao et al. [2019] studies a closely related Hadamard product reparameterization
wt = ut � vt and uses GD to implicitly induce sparsity
(our parametrization: wt = ut � ut − vt � vt)

Parametrization is very similar, but algorithms, analysis and results are not!
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Concurrent work: Zhao et al. [2019]

Similarities: RIP condition, minimax rates, instance adaptivity

Differences:
I They have worse conditions on step size, depending on unknown quantities

They require η .
w?

min
w?

max
(log d

α
)−1 while we require η . 1/w?max

Our theory show how w?max can be computed from the data, while in their
case η is additional hyperparameter to be tuned

I Their theory does not properly handle noisy settings and cannot
recover smallest possible signals

Let κ := w?
max
w?

min
They require RIP δ . 1

κ
√
k log(d/α)

, while we have δ . 1√
klogκ

If w?min � σ
√

log d/
√
n, they have δ = O(1/(

√
k
√
n)), which is in general

impossible to satisfy with random design matrices (e.g. X i.i.d. Gaussian)

I They only consider constant step size ⇒ do not achieve comput. optimality
Due to different constraints on step sizes, even in the case of constant step
size our algorithm is can be faster by a factor

√
n
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Summary and Research Directions
Main contribution:
Under the RIP, implicitly-reg. GD (parametriz. + initializ. + early stopping) yields:
I Optimal statistical rates (minimax)
I Instance adaptivity (beyond minimax, dim.-free rates for high signal-to-noise)
I Optimal computational cost (modulo log terms, same cost of reading data)

Further improvements: (we have empirical evidence)
I Optimal sample rates
I Restricted Eigenvalue (RE) condition, to allow for correlated design

General Research Directions:
I Establish general math. framework for implicit reg. and sparse recovery

(cf. bias-variance for ridge regression, basic inequality for M estimators,
connection to localized complexity measures)

I Establish a complete theory of early-stopping for sparse estimation (see above),
prediction, var. selection, oracle ineq., with focus on comput. efficiency

Explicit link with known penalty terms related to sparse recovery?
Can we apply some of the techniques for ridge regression (cf. slide 4)?
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Further Improvements - Optimal* Sample Complexity
I Recall that we require the RIP constant δ to satisfy δ = Õ(1/

√
k)

I Satisfying such an assumption requires n & k2 log(ed/k)

By random-matrix theory, ‖XTX/n− I‖ .
√
k/n+ k/n, ‖·‖ operator norm

Hence, we need n & k2 to satisfty ‖XTX/n− I‖ . 1/
√
k

Sub-optimal sample complexity due to our analysis, not to algorithm:

(a) Sample complexity linear in k is enough for
GD to match and eventually exceed `2-error
performance of the Lasso

(b) Sample complexity linear in k is enough for
GD to achieve the `∞-error in our main
theorem: ‖wt? � 1Sc‖∞ .

√
α < ε

d
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√
k)

I Satisfying such an assumption requires n & k2 log(ed/k)

By random-matrix theory, ‖XTX/n− I‖ .
√
k/n+ k/n, ‖·‖ operator norm

Hence, we need n & k2 to satisfty ‖XTX/n− I‖ . 1/
√
k

Sub-optimal sample complexity due to our analysis, not to algorithm:

(a) Sample complexity linear in k is enough for
GD to match and eventually exceed `2-error
performance of the Lasso

(b) Sample complexity linear in k is enough for
GD to achieve the `∞-error in our main
theorem: ‖wt? � 1Sc‖∞ .

√
α < ε

d

39



Further Improvements - Optimal* Sample Complexity
I Recall that we require the RIP constant δ to satisfy δ = Õ(1/
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√
k)

I Satisfying such an assumption requires n & k2 log(ed/k)

By random-matrix theory, ‖XTX/n− I‖ .
√
k/n+ k/n, ‖·‖ operator norm

Hence, we need n & k2 to satisfty ‖XTX/n− I‖ . 1/
√
k

Sub-optimal sample complexity due to our analysis, not to algorithm:

(a) Sample complexity linear in k is enough for
GD to match and eventually exceed `2-error
performance of the Lasso

(b) Sample complexity linear in k is enough for
GD to achieve the `∞-error in our main
theorem: ‖wt? � 1Sc‖∞ .

√
α < ε

d

39



Further Improvements - Relaxing RIP Assumption
I Lasso attains minimax rates under a Restricted Eigenvalue condition:

RE(γ): ‖Xw‖2
2/n ≥ γ‖w‖2

2 for vectors w satisfying the cone condition
‖wSc‖1 ≤ c‖wS‖1 for a suitable choice of constant c ≥ 1
Only imposes constraints on lower eigenvalues of XTX/n
The RE can be satisfied by random correlated designs

I RE is necessary for fast rates for any poly. time algorithm [Zhang et al., 2014]

Figure: i.i.d. Gaussian ensembles, covariance matrices (1− µ)I + µ11T for µ = 0 and 0.5.
For µ = 0.5 the RIP fails but RE condition holds w.h.p. Our method achieves the fast
rates and eventually outperforms the lasso even when we violate the RIP assumption
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