
Structure preservation in (some) deep learning
architectures

Brynjulf Owren

Department of Mathematical Sciences, NTNU, Trondheim, Norway

LMS-Bath Symposium – 2020

Joint work with: Martin Benning, Elena Celledoni, Matthias Ehrhardt,
Christian Etmann, Carola-Bibiane Schönlieb and Ferdia Sherry

1 / 31



Main sources for this talk

• Benning, Martin; Celledoni, Elena; Ehrhardt, Matthias J.;
Owren, Brynjulf; Schönlieb, Carola-Bibiane, Deep Learning as
Optimal Control Problems: Models and Numerical Methods J.
Comput. Dyn. 6 (2019), no. 2, 171–198.

• Elena Celledoni, Matthias J. Ehrhardt, Christian Etmann,
Robert I McLachlan, Brynjulf Owren, Carola-Bibiane
Schönlieb, Ferdia Sherry, Structure preserving deep learning,
arXiv:2006.03364 (June 2020)

2 / 31



Neural networks as discrete dynamical system

Neural network layers: φk : X k ×Θk → X k+1,

Θk : Parameter space of layer k
X k The kth feature space

The full neural network

Ψ : X ×Θ→ Y
(x , θ) 7→ zK

can then be defined via the iteration

z0 = x

zk+1 = φk(zk , θk), k = 0, . . . ,K − 1,

Extra final layer may be needed: η : XK ×ΘK → Y.
In this talk, X k = X for all k .

3 / 31



Training the neural network

Training data: (xn, yn)Nn=1 ⊂ X × Y
Training the network amounts to minimising the loss function

min
θ∈Θ

{
E (θ) =

1
N

N∑
n=1

Ln(Ψ(xn, θ)) + R(θ)

}
,

where
• Ln(y) : Y → R∞ is the loss for a specific data point
• R : Θ→ R∞ acts as a regulariser which penalises and
constrains unwanted solutions.

We can define the loss over a batch of N data points in terms of
the final layer as

E (z ; θ) =
1
N

N∑
n=1

Ln(η(zn), θ) + R(θ)

4 / 31



ResNet model (He et al. (2016))

Ψ : X ×Θ→ X , Ψ(x , θ) = zK given by the iteration

z0 = x

zk+1 = zk + σ(Akzk + bk), k = 0, . . . ,K − 1,

y = η(wT zK + µ)

• σ is a nonlinear activation function, a scalar function acting
element-wise on vectors.

• θk = (Ak , bk), k ≤ K − 1. θK = (w , µ).

The ResNet layers can be seen as a time stepper for the ODE

ż = σ(A(t)z + b(t)), t ∈ [0,T ]

It is the explicit Euler method with stepsize h = 1.

5 / 31



Activations – examples

σ1(x) = tanh x
σ2(x) = max(0, x), (RELU)

-4 -2 0 2 4

-1

-0.5

0

0.5

1

1
(x)=tanh(x)

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

1
'(x)=1-tanh2(x)

-4 -2 0 2 4

0

1

2

3

4

2
(x)=max(0,x)

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

2
'(x)=Heaviside(x)

6 / 31



The continuous optimal control problem – summarised

min
(θ,z)∈Θ×XN

{
E (θ, z) =

1
N

N∑
n=1

Ln(zn(T )) + R(θ)

}

such that żn = f (zn, θ(t)), zn(0) = xn, n = 1, . . . ,N.

7 / 31



Training as an Optimal Control Problem

The first order optimality conditions can be phrased as a
Hamiltonian Boundary Value Problem (Benning et al. (2020)).
Define

H(z , p; θ) = 〈p, f (z , p; θ)〉

Solve
ż =

∂H

∂p
, ṗ = −∂H

∂z
, 0 =

∂H

∂θ
.

with boundary conditions

z(0) = x , p(T ) =
∂L

∂z

∣∣∣∣
t=T

For ResNet, f (z , p; θ) = σ(A(t)z + b(t)), and we shall discuss
other alternative vector fields f .

8 / 31



Solving the HBVP

Standard procedure:

Initial guess θ(0)

while not converged
Sweep forward ż = f (z ; θ(i)) to get z1, . . . , zK , zk = φ(zk−1)
Backprop on ṗ = −Df (z)Tp to obtain ∇θE

Update by some descent method e.g. θ(i+1) = θ(i) − τ ∇θE(θ
(i))

• Chen et al (2018) suggest to use a black-box solver. Obtain
z(T ) and then do (z(t), p(t)) backwards in time
simultaneously to save memory usage.

• Problematic for various reasons. No explicit solver satisfying
first order optimality conditions + stability issues.

• Gholami et al (2019) amend problem by a checkpointing
method so only forward sweeps through feature spaces. Again:
first order optimality is not so clear

9 / 31



DTO vs OTD

Two options
1 DTO. Discretise the forward ODE (ż = f (z ; θ)) by some

numerical method φ. Then solve the discrete optimisation
problem, based on the gradients ∇θkE (zK ; θK ).

2 OTD. Solve the Hamiltonian boundary value problem by a
numerical method φ̄ : (zk , pk) 7→ (φ(zk), pk+1) and compute
∂φ
∂θ (zk , θk)Tpk+1 for each k .

Theorem (Benning et al 2020, Sanz-Serna 2015)

DTO and OTD are equivalent if the overall method φ̄ for the
Hamiltonian boundary value problem preserves quadratic invariants
(a.k.a. symplectic). That is,

∇θkE (zK ; θK ) =
∂φ

∂θ
(zk , θk)Tpk+1

10 / 31



An illustration

Figure: Snap shots of the transition from initial to final state through the
network with the spiral data set. From top to bottom: ResNet/Euler,
Improved Euler, and Kutta(4).

11 / 31



Generalisation mode – Forward problem

Once the network has been trained, the parameters θ(t) are known.
Generalisation (the forward problem) becomes a non-autonomous
initial value problem

ż = f̄ (t, z) := f (z ; θ(t)), z(0) = x .

- Arguably, one may ask for good “stability properties" for the forward
problem. Haber & Ruthotto (2017), Zhang & Schaeffer (2020).

- Stability may also be desired in “backward time", Chang et al.
(2018).

What is our freedom in choosing good models?

- Restrict parameter space Θ (A skew-symmetric, negative definite,
manifold-valued,. . . )

- Alter the structure of the vector field f (Hamiltonian, dissipative,
measure preserving,. . . )

- Apply integrator with good stability properties

12 / 31



Notions of stability

• Linear stability analysis (Haber and Ruthotto). Nonlinear
vector field f (t, z) look at spectrum of

J(t, z) :=
∂f

∂z
(t, z), Reλi ≤ 0

Works only locally and only with autonomous vector fields.
• Nonlinear stability analysis, look at norm contractivity/growth

‖z2(t)− z1(t)‖ ≤ C (t)‖z2(0)− z1(0)‖

Such conditions can be ensured by imposing Lipschitz type
conditions. E.g. for inner product spaces ν ∈ R

〈f (t, z2)− f (t, z1), z2 − z1〉 ≤ ν‖z2 − z1‖22, ∀z1, z2, t ∈ [0,T ]

⇒ ‖z2(t)− z1(t)‖ ≤ eνt‖z2(0)− z1(0)‖

13 / 31



Example of a stability result (Celledoni et al. (2020))

We consider for simplicity the ODE model

ż = −A(t)Tσ(A(t)z + b(t)) = f (t, z),

Here ż = −∇zV with V = γ(A(t)z + b(t))1 where γ′ = σ

Theorem

1 Let V (t, z) be twice differentiable and convex in the second
argument. Then the vector field f (t, z) = −∇V (t, z) satisfies
a one-sided Lipschitz condition with ν ≤ 0.

2 Suppose that σ(s) is absolutely continuous and 0 ≤ σ′(s) ≤ 1
a.e. in R. Then the one-sided Lipschitz condition holds for any
A(t) and b(t) with

−µ2
∗ ≤ νσ ≤ 0

where µ∗ = min
t
µ(t) and where µ(t) is the smallest singular

value of A(t). In particular νσ = −µ2
∗ is obtained when

σ(s) = s.

14 / 31



Hamiltonian architectures Chang et al. (2018)

Let
H(t, z , p) = T (t, p) + V (t, z)

Let γi : R→ R be such that γ′i (t) = σi (t), i = 1, 2 and set

T (t, p) = γ1(A1(t)p + b1(t))1, V (t, z) = γ2(A2(t)z + b2(t))1

where 1 = (1, . . . , 1)T .

This leads to models of the form

ż = ∂pH = A1(t)Tσ1(A1(t)p + b1(t))

ṗ = −∂zH = −A2(t)Tσ2(A2(t)z + b2(t))

15 / 31



Two particular Hamiltonian cases

1 A simple case is obtained by choosing σ1(s) := s, A1(t) ≡ I ,
b1(t) ≡ 0 and σ2(s) := σ(s) which after eliminating p yields
the second order ODE

z̈ = −∂zV = −A(t)Tσ(A(t)z + b(t))

2 A second example

ż = A(t)Tσ(A(t)p + b(t))

ṗ = −A(t)Tσ(A(t)z + b(t))

16 / 31



Non-autonomous Hamiltonian problems

Autonomous problems
• Two important geometric properties

• The flow preserves the Hamiltonian
• The flow is symplectic

• Numerical schemes can be symplectic or energy preserving,
excellent long time behaviour

Non-autonomous Hamiltonian problems
• The situation is less clear, at least two ways to interpret the
dynamics

1 ’Autonomise’ by adding time as dependent variable (contact
manifold). A preserved two-form can be introduced

ω = dp ∧ dq − dH ∧ dt

but the Hamiltonian is not preseved along the flow
2 Extend system by adding time and a conjugate momentum

variable pt . Define extended Hamiltonian
K (q, p, t, pt) = H(q, p, t) + pt and symplectic form

Ω = dp ∧ dq + dpt ∧ dt

17 / 31



The extended system

ż = ∂pH, ṗ = −∂zH, ṫ = 1, ṗt = −∂tH

• An obvious strategy would be to study the dynamics of the
extended autonomous Hamiltonian system.

• Unfortunately, it does not give a lot of information
• Any level set of K is unbounded
• Chang et al (2018) report good numerical results with this
type of model, I am not aware of any theoretical justification

• Asorey et al. (1983) contains a number of results for the
relations between the dynamics on the contact manifold and
the extended manifold, [more work to be done in this direction]

• LO Jay (2020), Marthinsen & O (2016) provide conditions on
numerical integrators to be canonical in the non-autonomous
case

18 / 31



Regularisation

Without regularisaton, the learned parameters become irregular in
time [see figure].
In the continuous model one may add a regularisation e.g.

R(θ) = λ

∫ T

0
‖θ̇‖2 dt

discretised, say, as

Rh(θ) = λ h
∑
k

(
‖θ(tk+1 − θ(tk)‖

h

)2

We tried λ ∈ {0.0, 0.1, 1.0}

19 / 31



A test on the spiral problem, λ = 0

20 / 31



A test on the spiral problem, λ = 0.1

21 / 31



A test on the spiral problem, λ = 1.0

22 / 31



Regularisation and stability conditions

Making the parameters more regular may intuitively make the
system “more autonomous".

Can we then use eigenvalue analysis for stability?
In the next plot we show

- the largest real part of the Jacobian eigenvalues (blue)
- the one-sided Lipschitz constant (red)

23 / 31



Eigenvalues (real part) vs one-sided Lipschitz constants

24 / 31



Topics discussed in our recent preprint, (but not in this talk)

• Deep limits – convergence as K →∞
• Invertible networks (similar to ODE-based networks)
• Features evolving on homogeneous manifolds
• Equivariance in Convolutional networks
• Algorithms for optimisation

• Descent methods accelerated by momentum, and ADAM-like
methods

• Hamiltonian descent methods
• Learning in Riemannian metric spaces
• Parameters evolving on manifolds

25 / 31



Thank you!

26 / 31



Appendix

Additional plots

27 / 31



Transitions in Runge–Kutta methods – spiral

Figure: Snap shots of the transition from initial to final state through the
network with the spiral data set. From top to bottom: ResNet/Euler,
Improved Euler, and Kutta(4).

28 / 31



Transitions in Runge–Kutta methods – donut2d

Figure: Snap shots of the transition from initial to final state through the
network with the donut2d data set. From top to bottom: ResNet/Euler,
Improved Euler, and Kutta(4).

29 / 31



Transitions in Runge–Kutta methods – squares

Figure: Snap shots of the transition from initial to final state through the
network with the squares data set. From top to bottom: ResNet/Euler,
Improved Euler, and Kutta(4).

30 / 31



References

1 Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David
Begert, and Elliot Holtham. Reversible architectures for
arbitrarily deep residual neural networks. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

2 Eldad Haber and Lars Ruthotto. Stable architectures for deep
neural networks. Inverse Problems, 34(1):014004, 2017.

3 J. M. Sanz-Serna. Symplectic Runge-Kutta schemes for
adjoint equations automatic differentiation, optimal control
and more. SIAM Review, 58:3–33, 2015.

4 Yann LeCun. A theoretical framework for back-propagation. In
Proceedings of the 1988 connectionist models summer school,
volume 1, pages 21–28. CMU, Pittsburgh, Pa: Morgan
Kaufmann, 1988.

5 Qianxiao Li and Shuji Hao. An Optimal Control Approach to
Deep Learning and Applications to Discrete-Weight Neural
Networks. arXiv:1803.01299v2, 2018

31 / 31


