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Problem statement

A We are interested in recovering an unknown image 1 , e.g.,
A We measuren related tocwby some mathematical model.
A For example, many imaging problems involve models of the form
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A The recovery of x from y is oftenlbsed or iHconditioned sowe regularize it.



Bayesian statistics

A We formulate the estimation problem in the Bayesian statistical framework, a
probabilistic mathematical framewoltik which werepresentwas a random quantity
and use probability distributions to model expected properties

A Toderive inferences about x from y we postulate a joint statisticatiel D o
typicallyspecifiedvia thedecompositiorB(chw) f(wwn(w).

A TheBayesiarframeworkis equippedwith a powerful decision theory to derive
solutions and inform decisions and conclusions in a rigorous and defensible way.



Bayesian statistics

A The decompositio®(ctr) NI () has two ingredients:

A Thelikelihood: the conditional distributionm}(«jc) that modelsthe data observation
process (the forward model).

A Theprior: the marginal distributiom(¢c) _ 1 ahd 'Q dhat modelsexpected
properties of the solutions.

A In imagingf(¢J¢) usually has significant identifiability issues and we rely strongly on
N(w) to regularize the estimation problem and deliver meaningful solutions.



Bayesian statistics

A We base our inferences on tip®sterior distribution
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where n(¢) _ N adw ‘Q ¢provides an indication of the goodness of fit

A Theconditionaldistribution B(aax) modelsour knowledge about the solutiotafter
observing the datay in a manner that is clear, modular and elegant.

A Inferences are then derived by usifigyesian decision theary



Bayesian statistics

There are three main challenges in deploying Bayesian approachmagingsciences:

1. Bayesian computation: calculating probabilities and expectatant B(ogw) is
computationally expensive, although algorithms are improving rapidly.

2. Bayesian analysis: we do not usually know what questions t®@sg) hmaging
sciences are a field in transition and the conceptalfitionis evolving.

3. Bayesiammodelling:while it is true thatall models are wrong, but some amseful,
Image models are often too simple to reliably support advanced inferences.
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In this talk

A Instead of specifying an analytic form fpfc)hwe consider the situation where the
prior knowledge aboutvis available as a set of examp{es} i.i.d. w.r.ta

A We aim tocombine this prior knowledge with a likelihoddwl @) specified
analyticallyto derive a posterior distribution fan(ajah{®} ).

A The goal is to construdf(¢jch{®} ) in a way that preserves the modularity and
Interpretability of analytic Bayesian models, and enables efficient computation.



Bayesian model

A Following tle manifold hypothesisve assume thatotakes values close to an
unknownrcdimensional submanifold of .

A To estimate this submanifold frofo} hwe introduce a latent representation™
a with ) L ‘Chand a mappingeDs © s, such that the pushforward measure

under%.0f 0x 0 (TO) is close to the empirical distribution €}

A Given%, the likelihoodD(&d) 1) s (W%4Q)). We can then easily derive the
posteriorB(alw) ® ()N a and benefit from greatly reduced dimensionality.

A The posterio®(¢jw) is simply the pushforward measure @gounder %o



Estimatingf

A There are different learning approaches to estim#tee.qg., variational aut@ncoders
(VAE)s and generatiaglversarial network§GAN)s.

A We use a VAE, i.e., ssumewis generated from the latent variabteas follows:
aD 6 (o)h @& NGl

A Asr g is unknown, we approximate it by a parameterized distributiofad ¢
defined by a neural networkhe decoder) This typically has for (*  (&)h, (&) Q8

A The objective is to setto maximize the marginal likelihoay (& 8 h )8This is

usuallycomputationally intractable, so we maximize a loweund instead.

SeeKingmaP. et at. Auto-encoding variationaBayes' (2013)arXiv1312.6114



Variational Autdencoders

A Thevariational lower boundon the loglikelihood is givery /
I TnQe® O [I Thg®] O (1 @A @)

A 1 (4l is an approximation aff (&c)hparameterisedby a
neural network(the encoder) Typicallyd (* (o)h, ).

A In maximising the variational lower bounithe encoder and
decoder are trained simultaneously encode  sampling  decode

A We use the decoder mean to defit® i.e.,x =* (Q).



Bayesian computation

A To compute probabilities and expectations td)we usea preconditioned Crank
Nicolson algorithmyvhich is a slow but robusfletropolizedMCMC algorithm.

A For additional robustness.r.t. multimodality, we runM+1 parallelMarkov chains
targetingd & D (§|w), B (a|w)hX B(d|)hand perform randomizedthainswaps

A Probabilities and expectations f@Jare directly available b¥epushing samples.

A We are developing fagiradientbasedstochastic algorithms. Naive dffe-shelf
Implementationsare not robust and have poor theoreticgluarantees in this setting.

Cotter, Simon L., et al. "MCMC methods for functions: modifying old algorithms to make them faststical Scienc013): 424446.



Previous works

A Ourwork iscloselyrelatedto the Joint MAP method of MGonzalez et at. (2019)
arXivl911.06379, which considers a similar setup but seeks to compute the
maximiser o ahdgw by alternating optimization.

A It is also related tavorks thatseek to learm) (Aof‘{oﬁug p) by using &GANe.g.,
Adler Jet al. (2018parXivi811.0591(GndZhang &t al.(2019)arXiv1908.01010.

A More generally, part of a literature on datitivenregularizatiorschemessee
ArridgeS,MaassP, OktemO, andSchonlielCB (2019) Actilumerica 28:1174.

A Underlying vision of Bayesian imaging methodology set in the seminal paper
Besagl, Green P, Higdon MengerserK (1995) Statist. Sci., 10 (3341
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Experiments

A We illustrate the proposed approach with three imaging problems: denoising,
deblurring (Gaussian blur 6x6 pixels), and inpainting (75% of missing pixels).

A For simplicity, we used the MNI8&taset (trainingset 60,000 images, test set
10,000 images, images of size 28p2&Is). In ouexperiments waise approxp
iterations andp Tparallel chains. Computing times of the ordetahinutes.

A We report comparisons withNIAPof Gonzales et al. (2019) and plagd-play
ADMM ofVenkatakrishnar(2013) using a deep denoiser specialised for MNIST.

SV.VenkatakrishnanC.ABouman and BWohlberg Plugand-Play Priors for Model Based Reconstructi@igbalSIF2013.



Dimension of the latent space

A The dimension of the latent space plays an important role in the regularization of the
Inverse problem and strongly impacts the quality of the model.

A We can easily identify suitable dimensions by looking at the empirical mafyimal
obtained from encoded training examples, e.g., we look at the trade Idi§) 8

| ®- | e e e et 0,0
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Image deblurring
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Image inpainting

M|
RIS ES

LISIES




Uncertaintyvisualization

A Inverse problems that are-tionditioned or ilposed typically have high levels of
Intrinsic uncertainty, which are not captured by point estimators.

A As a way of visualizing this uncertaintyg compute an eigenvalue decomposition of
the (latent) posterior covariance matrix to identify its two leading eigenvectors

A We then producea grid of solutionsacross this twedimensional subspace.
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Warning of severe model misspecification

A Data-driven priors strongly concentrate probability mass in specific regions of the
solution space.

A When used appropriately, then can deliver impressive results.

A However, data-driven priors easily override the likelihood and can lead to severe
model misspecification when the truth differs significantly from the training examples.



Model misspecification testing

A When using data-driven priors it is important to perform model misspecification
diagnosis tests.

A In the spirit of the Neyman-Pearson Lemma, we construct a statistical test based on
the marginal likelihood rj(w) that we estimate from the chains.

A We compute this statistic for synthetic observations generated from the training
dataset to establish the null distribution.

A This then allows misspecification testing and reporting p-values for observed data.



Model misspecification test

mm MNIST
0.0020 1 e HOtMNIST
0.0015/
0.0010]
0.0005
| ‘ -
0.0000 —20000 —15000 —10000 -5000 0
log p(y)

Denoising experiment (s  =). Rejedt null hypothesis (MNIST) with 99%
confidence, and average power of 99.6% for NotMNIST dataset.



Model misspecification test

0.00020 mmm MNIST
I notMNIST
0.00015
0.00010
0.00005
0.00000"_ 55000 -300000 -200000 -100000 0
log p(y)
Deblurring experiment (s = ).Rejértinull hypothesis (MNIST) with 99%

confidence, and average power of 99.8% for NotMNIST dataset.



Model misspecification test

mEm MNIST
0.0000037 wy notMNIST

0.000002 ;
0.000001 ;
0.000000 —3000000 —2500000 —2000000 —1500000 —1000000 —-500000
log p(y)
Inpainting experiment (s = ).(Rejéctinull hypothesis (MNIST) with 99%

confidence, and average power of 88.5% for NotMNIST dataset.



Frequentist coverage of Bayesian probabilities

A Are the Bayesian probabilities reported by our models accurate in a
frequentist sense? i.e., are they in agreement with empirical
averages from repeated experiments?

A We explore this question by repeating experiments with 1,000 test
Images and measuring the empirical probabilities that the truth is
within the ( 1a ) ®wghest posterior density credible region.



Frequentist coverage of Bayesian probabilities

Coverage properties for denoising (left) and inpainting (right) for different noise
levels (pixel dynamic range [0,1]).



