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Problem statement

ÅWe are interested in recovering an unknown image ὼɴ ᴙ , e.g., 

ÅWemeasureώ, related to ὼby some mathematical model.

Å For example, many imaging problems involve models of the form

ώ ὃὼ ύȟ (               ) + w

for some linear operator ὃΣ ŀƴŘ ǎƻƳŜ ǇŜǊǘǳǊōŀǘƛƻƴ ƻǊ άƴƻƛǎŜέ ǿΦ

Å The recovery of x from y is often ill-posed or ill-conditioned, so we regularize it. 



Bayesian statistics

ÅWe formulate the estimation problem in the Bayesian statistical framework, a 
probabilistic mathematical framework in which we represent ὼas a random quantity 
and use probability distributions to model expected properties.

ÅTo derive inferences about x from y we postulate a joint statistical modelÐὼȟώ
typically specified via the decomposition Ðὼȟώ ὴώὼὴὼ.

ÅTheBayesianframeworkisequippedwith a powerful decision theory to derive 
solutions and inform decisions and conclusions in a rigorous and defensible way.



Bayesian statistics

ÅThe decomposition Ðὼȟώ ὴώὼὴὼ has two ingredients:

ÅThelikelihood: the conditional distribution ὴώὼ that modelsthe data observation 
process (the forward model).

ÅThe prior: the marginal distribution ὴὼ ὴ᷿ὼȟώὨώthat modelsexpected 

properties of the solutions.

ÅIn imaging, ὴώὼ usually has significant identifiability issues and we rely strongly on 
ὴὼ to regularize the estimation problem and deliver meaningful solutions.



Bayesian statistics

ÅWe base our inferences on the posterior distribution 

Ðὼȿώ
ὴὼȟώ

ὴώ

ὴώὼὴὼ

ὴώ

where ὴώ ὴ᷿ὼȟώὨὼprovides an indication of the goodness of fit.

Å TheconditionaldistributionÐὼȿώmodelsour knowledge about the solution ὼafter 
observing the data ώ, in a manner that is clear, modular and elegant.

Å Inferences are then derived by using Bayesian decision theory. 



Bayesian statistics

There are three main challenges in deploying Bayesian approachesin imagingsciences:

1. Bayesian computation: calculating probabilities and expectations w.r.t.Ðὼȿώ is 
computationally expensive, although algorithms are improving rapidly.

2. Bayesian analysis: we do not usually know what questions to ask Ðὼȿώȟimaging 
sciences are a field in transition and the concept of solutionis evolving.

3. Bayesian modelling: while it is true that all models are wrong, but some are useful,  
image models are often too simple to reliably support advanced inferences.
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In this talk

ÅInstead of specifying an analytic form for ὴὼȟwe consider the situation where the 

prior knowledge about ὼis available as a set of examples ὼ i.i.d. w.r.t ὼ.

ÅWe aim to combine this prior knowledge with a likelihood ὴώὼ specified 

analyticallyto derive a posterior distribution for ὴὼώȟὼ . 

Å The goal is to construct ὴὼώȟὼ in a way that preserves the modularity and 

interpretability of analytic Bayesian models, and enables efficient computation.



Bayesian model

Å Following the manifold hypothesis, we assume that ὼtakes values close to an 
unknown ὴςdimensional submanifold of ᴙ .

Å To estimate this submanifold from ὼ ȟwe introduce a latent representation ᾀɴ
ᴙ with ὴḺὨȟand a mapping ‰Ḋᴙ ᴼᴙ , such that the pushforward measure 

under ‰of ᾀͯ ὔπȟὍ is close to the empirical distribution of ὼ .

ÅGiven ‰, the likelihood Ðώᾀ ὴȿ ώ‰ᾀ . We can then easily derive the 

posterior Ðᾀώᶿὴώᾀὴᾀand benefit from greatly reduced dimensionality. 

Å The posterior Ðὼώ is simply the pushforward measure of ᾀȿώunder ‰.



Estimating f

Å There are different learning approaches to estimate ‰, e.g., variational auto-encoders 
(VAE)s and generative adversarial networks (GAN)s. 

ÅWe use a VAE, i.e., we assumeὼis generated from the latent variable ᾀas follows:

ᾀḐὔπȟὍȟ ὼͯ ὴὼᾀ

Å As ὴὼȿᾀ is unknown, we approximate it by a parameterized distribution ὴ ὼᾀ
defined by a neural network (the decoder). This typically has form ὔ‘ ᾀȟ„ ᾀὍȢ

Å The objective is to set —to maximize  the marginal likelihood ὴ ὼȟȣȟὼ ȢThis is 

usually computationally intractable, so we maximize a lower bound instead.

See KingmaP. et at. "Auto-encoding variational Bayes." (2013) arXiv:1312.6114.



Å The variational lower bound on the log-likelihood is given by

ÌÏÇὴ ὼᾀ Ὁ ÌÏÇὴ ὼᾀ Ὀ ή ᾀὼᴁὴ ᾀ

Åή ᾀὼ is an approximation of ὴ ᾀὼȟparameterised by a 

neural network (the encoder). Typically ὔ‘ὼȟ„ ὼ). 

Å In maximising the variational lower bound, the encoder and 
decoder are trained simultaneously. 

ÅWe use the decoder mean to define ‰, i.e., x =‘ ᾀ.

Variational Auto-Encoders



Bayesian computation

Å To compute probabilities and expectations for ÚȿÙwe use a preconditioned Crank 
Nicolson algorithm,which is a slow but robust MetropolizedMCMC algorithm.

Å For additional robustness w.r.t. multimodality, we run M+1 parallel Markov chains 

targeting ÐᾀȟÐ ᾀώ,Ð ᾀώȟΧΣ Ðᾀώȟand perform randomized chain swaps.

Å Probabilities and expectations for ØȿÙare directly available by ‰-pushing samples.

ÅWe are developing fast gradient-based stochastic algorithms. Naïve off-the-shelf 
implementations are not robust and have poor theoretical guarantees in this setting.

Cotter, Simon L., et al. "MCMC methods for functions: modifying old algorithms to make them faster." Statistical Science(2013): 424-446.



Previous works
ÅOurwork iscloselyrelatedto the Joint MAP method of M. González et at. (2019) 

arXiv:1911.06379, which considers a similar setup but seeks to compute the 
maximiser of Ðὼȟᾀȿώ by alternating optimization.

Å It is also related to works that seek to learn ὴὼώȟὼὭ
ᴂ
Ὥρ

ὓ
by using a GAN, e.g., 

Adler J et al. (2018) arXiv:1811.05910 and Zhang C et al. (2019) arXiv:1908.01010.

ÅMore generally, part of a literature on data-driven regularization schemes; see 
ArridgeS, MaassP, OktemO, and SchönliebCB (2019) Acta Numerica, 28:1-174.

Å Underlying vision of Bayesian imaging methodology set in the seminal paper 
BesagJ, Green P, Higdon D, MengersenK (1995) Statist. Sci., 10 (1), 3--41.
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Experiments

ÅWe illustrate the proposed approach with three imaging problems: denoising, 
deblurring (Gaussian blur 6x6 pixels), and inpainting (75% of missing pixels).

Å For simplicity, we used the MNIST dataset (training set 60,000 images, test set 
10,000 images, images of size 28x28 pixels). In our experiments we use approx. ρπ
iterations and ρπparallel chains. Computing times of the order of υminutes.

ÅWe report comparisons with J-MAP of Gonzales et al. (2019) and plug-and-play 
ADMM of Venkatakrishnan(2013) using a deep denoiser specialised for MNIST.

S.V. Venkatakrishnan, C.A. Bouman, and B. Wohlberg, Plug-and-Play Priors for Model Based Reconstruction, GlobalSIP, 2013.



Dimension of the latent space

Å The dimension of the latent space plays an important role in the regularization of the 
inverse problem and strongly impacts the quality of the model. 

ÅWe can easily identify suitable dimensions by looking at the empirical marginal Ðᾀ
obtained from encoded training examples, e.g., we look at the trace of ÃÏÖᾀȢ

ὴ ρς



Image denoising
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Image deblurring
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Image inpainting
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Uncertaintyvisualization

Å Inverse problems that are ill-conditioned or ill-posed typically have high levels of 
intrinsic uncertainty, which are not captured by point estimators.

Å As a way of visualizing this uncertainty, we compute an eigenvalue decomposition of 
the (latent) posterior covariance matrix to identify its two leading eigenvectors.

ÅWe then produce a grid of solutionsacross this two-dimensional subspace.



Visualizing uncertainty
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Warning of severe model misspecification

Å Data-driven priors strongly concentrate probability mass in specific regions of the 

solution space.

Å When used appropriately, then can deliver impressive results.

Å However, data-driven priors easily override the likelihood and can lead to severe 

model misspecification when the truth differs significantly from the training examples.



Model misspecification testing

Å When using data-driven priors it is important to perform model misspecification 

diagnosis tests.

Å In the spirit of the Neyman-Pearson Lemma, we construct a statistical test based on 

the marginal likelihood ὴώ that we estimate from the chains.

Å We compute this statistic for synthetic observations generated from the training 

dataset to establish the null distribution.

Å This then allows misspecification testing and reporting p-values for observed data.



Model misspecification test

Denoising experiment (s = 0.1). Reject null hypothesis (MNIST) with 99% 

confidence, and average power of 99.6% for NotMNIST dataset. 



Model misspecification test

Deblurring experiment (s = 0.01). Reject null hypothesis (MNIST) with 99% 

confidence, and average power of 99.8% for NotMNIST dataset. 



Model misspecification test

Inpainting experiment (s = 0.01). Reject null hypothesis (MNIST) with 99% 

confidence, and average power of 88.5% for NotMNIST dataset. 



Frequentist coverage of Bayesian probabilities

Å Are the Bayesian probabilities reported by our models accurate in a 

frequentist sense? i.e., are they in agreement with empirical 

averages from repeated experiments?

Å We explore this question by repeating experiments with 1,000 test 

images and measuring the empirical probabilities that the truth is 

within the (1-a)%highest posterior density credible region. 



Frequentist coverage of Bayesian probabilities

Coverage properties for denoising (left) and inpainting (right) for different noise 

levels (pixel dynamic range [0,1]). 


